[1]
|
F. Ahmed and N. Rajaratnam, Flow around bridge piers, Journal of Hydraulic Engineering, 124 (1998), 288-300.
doi: 10.1061/(ASCE)0733-9429(1998)124:3(288).
|
[2]
|
L. Ardizzone, C. Lüth, J. Kruse, C. Rother and U. Köthe, Guided image generation with conditional invertible neural networks, preprint, arXiv: 1907.02392.
|
[3]
|
K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz and M. Dellnitz, Deep model predictive control with online learning for complex physical systems, preprint, arXiv: 1905.10094.
|
[4]
|
L. Chen, K. Asai, T. Nonomura, G. Xi and T. Liu, A review of backward-facing step (BFS) flow mechanisms, heat transfer and control, Thermal Science and Engineering Progress, 6 (2018), 194-216.
doi: 10.1016/j.tsep.2018.04.004.
|
[5]
|
J. Chung, S. Ahn and Y. Bengio, Hierarchical multiscale recurrent neural networks, preprint, arXiv: 1609.01704.
|
[6]
|
L. Dinh, D. Krueger and Y. Bengio, Nice: Non-linear independent components estimation, preprint, arXiv: 1410.8516.
|
[7]
|
L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using real nvp, preprint, arXiv: 1605.08803.
|
[8]
|
E. Erturk, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, part I: High Reynolds number solutions, Computers and Fluids, 37 (2008), 633-655.
doi: 10.1016/j.compfluid.2007.09.003.
|
[9]
|
N. Geneva and N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks, Journal of Computational Physics, 109056.
doi: 10.1016/j.jcp.2019.109056.
|
[10]
|
N. Geneva and N. Zabaras, Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks, Journal of Computational Physics, 383 (2019), 125-147.
doi: 10.1016/j.jcp.2019.01.021.
|
[11]
|
X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011,315–323.
|
[12]
|
J. S. González, A. G. G. Rodriguez, J. C. Mora, J. R. Santos and M. B. Payan, Optimization of wind farm turbines layout using an evolutive algorithm, Renewable Energy, 35 (2010), 1671–1681. Available from: http://www.sciencedirect.com/science/article/pii/S0960148110000145.
|
[13]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
|
[14]
|
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems, 2014, 2672–2680.
|
[15]
|
W. Grathwohl, R. T. Chen, J. Betterncourt, I. Sutskever and D. Duvenaud, Ffjord: Free-form continuous dynamics for scalable reversible generative models, preprint, arXiv: 1810.01367.
|
[16]
|
X. Guo, W. Li and F. Iorio, Convolutional neural networks for steady flow approximation, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
doi: 10.1145/2939672.2939738.
|
[17]
|
G. Haller, An objective definition of a vortex, Journal of Fluid Mechanics, 525 (2005), 1-26.
doi: 10.1017/S0022112004002526.
|
[18]
|
R. Han, Y. Wang, Y. Zhang and G. Chen, A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network, Physics of Fluids, 31 (2019), 127101.
doi: 10.1063/1.5127247.
|
[19]
|
O. Hennigh, Lat-net: Compressing lattice Boltzmann flow simulations using deep neural networks, preprint, arXiv: 1705.09036.
|
[20]
|
J. Hoffman and C. Johnson, A new approach to computational turbulence modeling, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 2865-2880.
doi: 10.1016/j.cma.2004.09.015.
|
[21]
|
J. Holgate, A. Skillen, T. Craft and A. Revell, A review of embedded large eddy simulation for internal flows, Archives of Computational Methods in Engineering, 26 (2019), 865-882.
doi: 10.1007/s11831-018-9272-5.
|
[22]
|
G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger, Densely connected convolutional networks, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
doi: 10.1109/CVPR.2017.243.
|
[23]
|
W. Huang, Q. Yang and H. Xiao, CFD modeling of scale effects on turbulence flow and scour around bridge piers, Computers and Fluids, 38 (2009), 1050-1058.
doi: 10.1016/j.compfluid.2008.01.029.
|
[24]
|
J. C. Hunt, A. A. Wray and P. Moin, Eddies, streams, and convergence zones in turbulent flows, in Center for Turbulence Research Report, CTR-S88, 1988. Available from: https://ntrs.nasa.gov/search.jsp?R=19890015184.
|
[25]
|
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, preprint, arXiv: 1502.03167.
|
[26]
|
J.-H. Jacobsen, A. Smeulders and E. Oyallon, i-revnet: Deep invertible networks, preprint, arXiv: 1802.07088.
|
[27]
|
H. Jasak, A. Jemcov, Z. Tukovic, et al., OpenFOAM: A C++ library for complex physics simulations, in International Workshop on Coupled Methods in Numerical Dynamics, 1000, IUC Dubrovnik, Croatia, 2007, 1–20.
|
[28]
|
B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross and B. Solenthaler, Deep fluids: A generative network for parameterized fluid simulations, Computer Graphics Forum, 38 (2019), 59-70.
doi: 10.1111/cgf.13619.
|
[29]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
|
[30]
|
D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114.
|
[31]
|
D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, in Advances in Neural Information Processing Systems, 2018, 10215–10224.
|
[32]
|
M. Kumar, M. Babaeizadeh, D. Erhan, C. Finn, S. Levine, L. Dinh and D. Kingma, Videoflow: A flow-based generative model for video, preprint, arXiv: 1903.01434.
|
[33]
|
R. Kumar, S. Ozair, A. Goyal, A. Courville and Y. Bengio, Maximum entropy generators for energy-based models, preprint, arXiv: 1901.08508.
|
[34]
|
C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante and T. Poinsot, Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates, Combustion and Flame, 203 (2019), 255-264.
doi: 10.1016/j.combustflame.2019.02.019.
|
[35]
|
Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato and F. Huang, A tutorial on energy-based learning, Predicting Structured Data, 1 (2006), 59 pp.
|
[36]
|
C. Li, J. Li, G. Wang and L. Carin, Learning to sample with adversarially learned likelihood-ratio, 2018. Available from: https://openreview.net/forum?id=S1eZGHkDM.
|
[37]
|
J. Ling, A. Kurzawski and J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, Journal of Fluid Mechanics, 807 (2016), 155-166.
doi: 10.1017/jfm.2016.615.
|
[38]
|
P. Liu, X. Qiu, X. Chen, S. Wu and X.-J. Huang, Multi-timescale long short-term memory neural network for modelling sentences and documents, in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, 2326–2335.
doi: 10.18653/v1/D15-1280.
|
[39]
|
R. Maulik, O. San, A. Rasheed and P. Vedula, Subgrid modelling for two-dimensional turbulence using neural networks, Journal of Fluid Mechanics, 858 (2019), 122-144.
doi: 10.1017/jfm.2018.770.
|
[40]
|
S. M. Mitran, A Comparison of Adaptive Mesh Refinement Approaches for Large Eddy Simulation, Technical report, Washington University, Seattle, Department of Applied Mathematics, 2001.
|
[41]
|
S. Mo, Y. Zhu, N. Zabaras, X. Shi and J. Wu, Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media, Water Resources Research, 55 (2019), 703-728.
doi: 10.1029/2018WR023528.
|
[42]
|
A. Mohan, D. Daniel, M. Chertkov and D. Livescu, Compressed convolutional lstm: An efficient deep learning framework to model high fidelity 3d turbulence, preprint, arXiv: 1903.00033.
|
[43]
|
M. H. Patel, Dynamics of Offshore Structures, Butterworth-Heinemann, 2013.
|
[44]
|
S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511840531.
|
[45]
|
P. Quéméré and P. Sagaut, Zonal multi-domain rans/les simulations of turbulent flows, International Journal for Numerical Methods in Fluids, 40 (2002), 903-925.
doi: 10.1002/fld.381.
|
[46]
|
J. Rabault, M. Kuchta, A. Jensen, U. Réglade and N. Cerardi, Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control, Journal of Fluid Mechanics, 865 (2019), 281-302.
doi: 10.1017/jfm.2019.62.
|
[47]
|
M. Raissi, P. Perdikaris and G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[48]
|
M. Raissi, Z. Wang, M. S. Triantafyllou and G. E. Karniadakis, Deep learning of vortex-induced vibrations, Journal of Fluid Mechanics, 861 (2019), 119-137.
doi: 10.1017/jfm.2018.872.
|
[49]
|
P. Sagaut, Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines, World Scientific, 2013.
doi: 10.1142/p878.
|
[50]
|
M. Samorani, The wind farm layout optimization problem, in Handbook of Wind Power Systems (eds. P. M. Pardalos, S. Rebennack, M. V. F. Pereira, N. A. Iliadis and V. Pappu)
doi: 10.1007/978-3-642-41080-2_2.
|
[51]
|
J. U. Schlüter, H. Pitsch and P. Moin, Large-eddy simulation inflow conditions for coupling with reynolds-averaged flow solvers, AIAA Journal, 42 (2004), 478–484. Available from: https://doi.org/10.2514/1.3488.
|
[52]
|
X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong and W.-c. Woo, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, in Advances in Neural Information Processing Systems 28, Curran Associates, Inc., 2015,802–810. Available from: http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learningapproach-for-precipitation-nowcasting.pdf
|
[53]
|
J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Monthly Weather Review, 91 (1963), 99-164.
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
|
[54]
|
I. Sobel and G. Feldman, A 3x3 isotropic gradient operator for image processing, Presented at a talk at the Stanford Artificial Intelligence Project, 271–272.
|
[55]
|
C. G. Speziale, Computing non-equilibrium turbulent flows with time-dependent RANS and VLES, in Fifteenth International Conference on Numerical Methods in Fluid Dynamics, Springer, 1997,123–129.
doi: 10.1007/BFb0107089.
|
[56]
|
A. Subramaniam, M. L. Wong, R. D. Borker, S. Nimmagadda and S. K. Lele, Turbulence enrichment using generative adversarial networks, preprint, arXiv: 2003.01907.
|
[57]
|
L. Sun, H. Gao, S. Pan and J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Computer Methods in Applied Mechanics and Engineering, 361 (2020), 112732.
doi: 10.1016/j.cma.2019.112732.
|
[58]
|
E. G. Tabak and C. V. Turner, A family of nonparametric density estimation algorithms, Communications on Pure and Applied Mathematics, 66 (2013), 145-164.
doi: 10.1002/cpa.21423.
|
[59]
|
E. G. Tabak and E. Vanden-Eijnden, et al., Density estimation by dual ascent of the log-likelihood, Communications in Mathematical Sciences, 8 (2010), 217-233.
doi: 10.4310/CMS.2010.v8.n1.a11.
|
[60]
|
S. Taghizadeh, F. D. Witherden and S. S. Girimaji, Turbulence closure modeling with data-driven techniques: Physical compatibility and consistency considerations, preprint, arXiv: 2004.03031.
|
[61]
|
M. Terracol, E. Manoha, C. Herrero, E. Labourasse, S. Redonnet and P. Sagaut, Hybrid methods for airframe noise numerical prediction, Theoretical and Computational Fluid Dynamics, 19 (2005), 197-227.
doi: 10.1007/s00162-005-0165-5.
|
[62]
|
M. Terracol, P. Sagaut and C. Basdevant, A multilevel algorithm for large-eddy simulation of turbulent compressible flows, Journal of Computational Physics, 167 (2001), 439-474.
doi: 10.1016/S0021-9991(02)00017-7.
|
[63]
|
J. Tompson, K. Schlachter, P. Sprechmann and K. Perlin, Accelerating eulerian fluid simulation with convolutional networks, in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML'17, JMLR.org, 2017, 3424–3433. Available from: http://dl.acm.org/citation.cfm?id=3305890.3306035.
|
[64]
|
A. Travin, M. Shur, M. Strelets and P. R. Spalart, Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows, in Advances in LES of Complex Flows (eds. R. Friedrich and W. Rodi), Springer Netherlands, Dordrecht, 2002,239–254.
doi: 10.1007/0-306-48383-1_16.
|
[65]
|
Y.-H. Tseng, C. Meneveau and M. B. Parlange, Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation, Environmental Science & Technology, 40 (2006), 2653-2662.
doi: 10.1021/es051708m.
|
[66]
|
J.-X. Wang, J.-L. Wu and H. Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data, Phys. Rev. Fluids, 2 (2017), 034603.
doi: 10.1103/PhysRevFluids.2.034603.
|
[67]
|
Z. Wang, K. Luo, D. Li, J. Tan and J. Fan, Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Physics of Fluids, 30 (2018), 125101.
doi: 10.1063/1.5054835.
|
[68]
|
M. Werhahn, Y. Xie, M. Chu and N. Thuerey, A multi-pass GAN for fluid flow super-resolution, preprint, arXiv: 1906.01689.
doi: 10.1145/3340251.
|
[69]
|
S. Wiewel, M. Becher and N. Thuerey, Latent space physics: Towards learning the temporal evolution of fluid flow, Computer Graphics Forum, 38 (2019), 71-82.
doi: 10.1111/cgf.13620.
|
[70]
|
J. Wu, H. Xiao, R. Sun and Q. Wang, Reynolds-averaged Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned, Journal of Fluid Mechanics, 869 (2019), 553-586.
doi: 10.1017/jfm.2019.205.
|
[71]
|
H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun and C. Roy, Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach, Journal of Computational Physics, 324 (2016), 115-136.
doi: 10.1016/j.jcp.2016.07.038.
|
[72]
|
W. Xiong, W. Luo, L. Ma, W. Liu and J. Luo, Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 2364–2373.
doi: 10.1109/CVPR.2018.00251.
|
[73]
|
Y. Yang and P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, Journal of Computational Physics, 394 (2019), 136-152.
doi: 10.1016/j.jcp.2019.05.027.
|
[74]
|
L. Zhao, X. Peng, Y. Tian, M. Kapadia and D. Metaxas, Learning to forecast and refine residual motion for image-to-video generation, in Proceedings of the European Conference on Computer Vision (ECCV), 2018,387–403.
doi: 10.1007/978-3-030-01267-0_24.
|
[75]
|
Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, Journal of Computational Physics, 366 (2018), 415-447.
doi: 10.1016/j.jcp.2018.04.018.
|
[76]
|
Y. Zhu, N. Zabaras, P.-S. Koutsourelakis and P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, Journal of Computational Physics, 394 (2019), 56-81.
doi: 10.1016/j.jcp.2019.05.024.
|