
- Previous Article
- FoDS Home
- This Issue
-
Next Article
A topological approach to spectral clustering
HERMES: Persistent spectral graph software
1. | Department of Mathematics, Michigan State University, MI 48824, USA |
2. | Department of Computer Science and Engineering, Michigan State University, MI 48824, USA |
3. | Department of Mathematics, Department of Electrical and Computer Engineering, Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA |
Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacian matrices (PLMs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLMs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.
References:
[1] |
H. Adams, A. Tausz and M. Vejdemo-Johansson, JavaPlex: A research software package for persistent (co) homology, in International Congress on Mathematical Software, Lecture Notes in Computer Science, 8592, Springer, 2014, 129-136.
doi: 10.1007/978-3-662-44199-2_23. |
[2] |
S. G. Aksoy, C. Joslyn, C. O. Marrero, B. Praggastis and E. Purvine, Hypernetwork science via high-order hypergraph walks, EPJ Data Science, 9 (2020).
doi: 10.1140/epjds/s13688-020-00231-0. |
[3] |
F. Aurenhammer, R. Klein and D.-T. Lee, Voronoi Diagrams and Delaunay Triangulations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8685. |
[4] |
U. Bauer, Ripser: A lean C++ code for the computation of Vietoris-Rips persistence barcodes, 2017. Software available from: https://github.com/Ripser/ripser. |
[5] |
U. Bauer, M. Kerber and J. Reininghaus, DIPHA (A distributed persistent homology algorithm), 2014. Software available from: https://github.com/DIPHA/dipha. |
[6] |
S. Bressan, J. Li, S. Ren and J. Wu,
The embedded homology of hypergraphs and applications, Asian J. Math, 23 (2019), 479-500.
doi: 10.4310/AJM.2019.v23.n3.a6. |
[7] |
P. Bubenik and P. T. Kim,
A statistical approach to persistent homology, Homology Homotopy Appl., 9 (2007), 337-362.
doi: 10.4310/HHA.2007.v9.n2.a12. |
[8] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLoS Computational Biology, 13 (2017).
doi: 10.1371/journal.pcbi.1005690. |
[9] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, in Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247-256.
doi: 10.1145/1542362.1542408. |
[10] |
G. Carlsson, A. Zomorodian, A. Collins and L. Guibas,
Persistence barcodes for shapes, International J. Shape Modeling, 11 (2005), 149-187.
doi: 10.1142/S0218654305000761. |
[11] |
J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis, Princeton Univ. Press, Princeton, NJ, 1970, 195-199.
doi: 10.1515/9781400869312-013. |
[12] |
J. Chen, R. Zhao, Y. Tong and G.-W. Wei, Evolutionary de Rham-Hodge method, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020257. |
[13] |
F. R. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997. |
[14] |
M.-V. Ciocanel, R. Juenemann, A. T. Dawes and S. A. McKinley, Topological data analysis approaches to uncovering the timing of ring structure onset in filamentous networks, Bull. Math. Biol., 83 (2021), 21pp.
doi: 10.1007/s11538-020-00847-3. |
[15] |
V. de Silva and R. Ghrist,
Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7 (2007), 339-358.
doi: 10.2140/agt.2007.7.339. |
[16] |
B. Delaunay,
Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7 (1934), 793-800.
|
[17] |
T. K. Dey, F. Fan and Y. Wang, Computing topological persistence for simplicial maps, in Computational Geometry (SoCG'14), ACM, New York, 2014, 345-354.
doi: 10.1145/2582112.2582165. |
[18] |
B. Eckmann,
Harmonische funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv., 17 (1945), 240-255.
|
[19] |
H. Edelsbrunner, Alpha shapes - A survey, Tessellations in the Sciences, 27 (2010), 1-25. Available from: https://pub.ist.ac.at/edels/Papers/2011-B-03-AlphaShapes.pdf. |
[20] |
H. Edelsbrunner and J. Harer, Persistent homology - A survey, in Surveys on Discrete and Computational Geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257-282. |
[21] |
B. T. Fasy, J. Kim, F. Lecci, C. Maria, D. L. Millman and M. J. Kim, Package (TDA), 2019. |
[22] |
J. Friedman,
Computing Betti numbers via combinatorial Laplacians, Algorithmica, 21 (1998), 331-346.
doi: 10.1007/PL00009218. |
[23] |
C. Giusti, E. Pastalkova, C. Curto and V. Itskov,
Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112 (2015), 13455-13460.
doi: 10.1073/pnas.1506407112. |
[24] |
D. Hernández Serrano, J. Hernaández-Serrano and D. Sánchez Gómez, Simplicial degree in complex networks. Applications of topological data analysis to network science, Chaos Solitons Fractals, 137 (2020), 21pp.
doi: 10.1016/j.chaos.2020.109839. |
[25] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Applied Mathematical Sciences, 157, Springer-Verlag, New York, 2004.
doi: 10.1007/b97315. |
[26] |
F. W. Kamber and P. Tondeur,
De Rham-Hodge theory for Riemannian foliations, Math. Ann., 277 (1987), 415-431.
doi: 10.1007/BF01458323. |
[27] |
M. Kerber and H. Edelsbrunner, The medusa of spatial sorting: 3D kinetic alpha complexes and implementation, preprint, arXiv:1209.5434. |
[28] |
Y. Lee, S. D. Barthel, P. Dłotko, S. Mohamad Moosavi, K. Hess and B. Smit, Quantifying similarity of pore-geometry in nanoporous materials, Nature Communications, 8 (2017).
doi: 10.1038/ncomms15396. |
[29] |
V. Maroulas, C. P. Micucci and F. Nasrin, Bayesian topological learning for classifying the structure of biological networks, preprint, arXiv:2009.11974. |
[30] |
J. May, Multivariate Analysis, Scientific e-Resources, 2018. |
[31] |
F. Mémoli, Z. Wan and Y. Wang, Persistent Laplacians: Properties, algorithms and implications, preprint, arXiv:2012.02808. |
[32] |
Z. Meng, D. Vijay Anand, Y. Lu, J. Wu and K. Xia,
Weighted persistent homology for biomolecular data analysis, Scientific Reports, 10 (2020), 1-15.
doi: 10.1038/s41598-019-55660-3. |
[33] |
Z. Meng and K. Xia, Persistent spectral based machine learning (PerSpect ML) for drug design, preprint, arXiv:2002.00582. |
[34] |
K. Mischaikow and V. Nanda,
Morse theory for filtrations and efficient computation of persistent homology, Discrete Comput. Geom., 50 (2013), 330-353.
doi: 10.1007/s00454-013-9529-6. |
[35] |
D. Morozov, Dionysus Software, 2012. |
[36] |
D. Morozov and P. Skraba, DioDe Software, 2017. |
[37] |
D. Nguyen and G.-W. Wei,
AGL-Score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking, and screening, J. Chemical Information Modeling, 59 (2019), 3291-3304.
doi: 10.1021/acs.jcim.9b00334. |
[38] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, J. Comput. Aided Mol. Des., 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[39] |
Gudhi Project, GUDHI User and Reference Manual, 2015. |
[40] |
I. Sgouralis, A. Nebenführ and V. Maroulas,
A Bayesian topological framework for the identification and reconstruction of subcellular motion, SIAM J. Imaging Sci., 10 (2017), 871-899.
doi: 10.1137/16M1095755. |
[41] |
D. A. Spielman, Spectral graph theory and its applications, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), IEEE, 2007, 29-38.
doi: 10.1109/FOCS.2007.56. |
[42] |
J. Townsend, C. P. Micucci, J. H. Hymel, V. Maroulas and K. D. Vogiatzis, Representation of molecular structures with persistent homology for machine learning applications in chemistry, Nature Communications, 11 (2020).
doi: 10.1038/s41467-020-17035-5. |
[43] |
G. Voronoi,
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 133 (1908), 97-102.
doi: 10.1515/crll.1908.133.97. |
[44] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, Int. J. Numer. Methods Biomed. Eng., 36 (2020), 27pp.
doi: 10.1002/cnm.3376. |
[45] |
K. Xia, K. Opron and G.-W. Wei, Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM), J. Chem. Phys., 143 (2015).
doi: 10.1063/1.4936132. |
[46] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility, and folding, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[47] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong,
3D hodge decompositions of edge-and face-based vector fields., ACM Transactions on Graphics (TOG), 38 (2019), 1-13.
doi: 10.1145/3355089.3356546. |
[48] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 38pp.
doi: 10.1007/s11538-020-00783-2. |
[49] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete Comput. Geom., 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |
show all references
References:
[1] |
H. Adams, A. Tausz and M. Vejdemo-Johansson, JavaPlex: A research software package for persistent (co) homology, in International Congress on Mathematical Software, Lecture Notes in Computer Science, 8592, Springer, 2014, 129-136.
doi: 10.1007/978-3-662-44199-2_23. |
[2] |
S. G. Aksoy, C. Joslyn, C. O. Marrero, B. Praggastis and E. Purvine, Hypernetwork science via high-order hypergraph walks, EPJ Data Science, 9 (2020).
doi: 10.1140/epjds/s13688-020-00231-0. |
[3] |
F. Aurenhammer, R. Klein and D.-T. Lee, Voronoi Diagrams and Delaunay Triangulations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8685. |
[4] |
U. Bauer, Ripser: A lean C++ code for the computation of Vietoris-Rips persistence barcodes, 2017. Software available from: https://github.com/Ripser/ripser. |
[5] |
U. Bauer, M. Kerber and J. Reininghaus, DIPHA (A distributed persistent homology algorithm), 2014. Software available from: https://github.com/DIPHA/dipha. |
[6] |
S. Bressan, J. Li, S. Ren and J. Wu,
The embedded homology of hypergraphs and applications, Asian J. Math, 23 (2019), 479-500.
doi: 10.4310/AJM.2019.v23.n3.a6. |
[7] |
P. Bubenik and P. T. Kim,
A statistical approach to persistent homology, Homology Homotopy Appl., 9 (2007), 337-362.
doi: 10.4310/HHA.2007.v9.n2.a12. |
[8] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLoS Computational Biology, 13 (2017).
doi: 10.1371/journal.pcbi.1005690. |
[9] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, in Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247-256.
doi: 10.1145/1542362.1542408. |
[10] |
G. Carlsson, A. Zomorodian, A. Collins and L. Guibas,
Persistence barcodes for shapes, International J. Shape Modeling, 11 (2005), 149-187.
doi: 10.1142/S0218654305000761. |
[11] |
J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis, Princeton Univ. Press, Princeton, NJ, 1970, 195-199.
doi: 10.1515/9781400869312-013. |
[12] |
J. Chen, R. Zhao, Y. Tong and G.-W. Wei, Evolutionary de Rham-Hodge method, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020257. |
[13] |
F. R. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997. |
[14] |
M.-V. Ciocanel, R. Juenemann, A. T. Dawes and S. A. McKinley, Topological data analysis approaches to uncovering the timing of ring structure onset in filamentous networks, Bull. Math. Biol., 83 (2021), 21pp.
doi: 10.1007/s11538-020-00847-3. |
[15] |
V. de Silva and R. Ghrist,
Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7 (2007), 339-358.
doi: 10.2140/agt.2007.7.339. |
[16] |
B. Delaunay,
Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7 (1934), 793-800.
|
[17] |
T. K. Dey, F. Fan and Y. Wang, Computing topological persistence for simplicial maps, in Computational Geometry (SoCG'14), ACM, New York, 2014, 345-354.
doi: 10.1145/2582112.2582165. |
[18] |
B. Eckmann,
Harmonische funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv., 17 (1945), 240-255.
|
[19] |
H. Edelsbrunner, Alpha shapes - A survey, Tessellations in the Sciences, 27 (2010), 1-25. Available from: https://pub.ist.ac.at/edels/Papers/2011-B-03-AlphaShapes.pdf. |
[20] |
H. Edelsbrunner and J. Harer, Persistent homology - A survey, in Surveys on Discrete and Computational Geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257-282. |
[21] |
B. T. Fasy, J. Kim, F. Lecci, C. Maria, D. L. Millman and M. J. Kim, Package (TDA), 2019. |
[22] |
J. Friedman,
Computing Betti numbers via combinatorial Laplacians, Algorithmica, 21 (1998), 331-346.
doi: 10.1007/PL00009218. |
[23] |
C. Giusti, E. Pastalkova, C. Curto and V. Itskov,
Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112 (2015), 13455-13460.
doi: 10.1073/pnas.1506407112. |
[24] |
D. Hernández Serrano, J. Hernaández-Serrano and D. Sánchez Gómez, Simplicial degree in complex networks. Applications of topological data analysis to network science, Chaos Solitons Fractals, 137 (2020), 21pp.
doi: 10.1016/j.chaos.2020.109839. |
[25] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Applied Mathematical Sciences, 157, Springer-Verlag, New York, 2004.
doi: 10.1007/b97315. |
[26] |
F. W. Kamber and P. Tondeur,
De Rham-Hodge theory for Riemannian foliations, Math. Ann., 277 (1987), 415-431.
doi: 10.1007/BF01458323. |
[27] |
M. Kerber and H. Edelsbrunner, The medusa of spatial sorting: 3D kinetic alpha complexes and implementation, preprint, arXiv:1209.5434. |
[28] |
Y. Lee, S. D. Barthel, P. Dłotko, S. Mohamad Moosavi, K. Hess and B. Smit, Quantifying similarity of pore-geometry in nanoporous materials, Nature Communications, 8 (2017).
doi: 10.1038/ncomms15396. |
[29] |
V. Maroulas, C. P. Micucci and F. Nasrin, Bayesian topological learning for classifying the structure of biological networks, preprint, arXiv:2009.11974. |
[30] |
J. May, Multivariate Analysis, Scientific e-Resources, 2018. |
[31] |
F. Mémoli, Z. Wan and Y. Wang, Persistent Laplacians: Properties, algorithms and implications, preprint, arXiv:2012.02808. |
[32] |
Z. Meng, D. Vijay Anand, Y. Lu, J. Wu and K. Xia,
Weighted persistent homology for biomolecular data analysis, Scientific Reports, 10 (2020), 1-15.
doi: 10.1038/s41598-019-55660-3. |
[33] |
Z. Meng and K. Xia, Persistent spectral based machine learning (PerSpect ML) for drug design, preprint, arXiv:2002.00582. |
[34] |
K. Mischaikow and V. Nanda,
Morse theory for filtrations and efficient computation of persistent homology, Discrete Comput. Geom., 50 (2013), 330-353.
doi: 10.1007/s00454-013-9529-6. |
[35] |
D. Morozov, Dionysus Software, 2012. |
[36] |
D. Morozov and P. Skraba, DioDe Software, 2017. |
[37] |
D. Nguyen and G.-W. Wei,
AGL-Score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking, and screening, J. Chemical Information Modeling, 59 (2019), 3291-3304.
doi: 10.1021/acs.jcim.9b00334. |
[38] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, J. Comput. Aided Mol. Des., 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[39] |
Gudhi Project, GUDHI User and Reference Manual, 2015. |
[40] |
I. Sgouralis, A. Nebenführ and V. Maroulas,
A Bayesian topological framework for the identification and reconstruction of subcellular motion, SIAM J. Imaging Sci., 10 (2017), 871-899.
doi: 10.1137/16M1095755. |
[41] |
D. A. Spielman, Spectral graph theory and its applications, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), IEEE, 2007, 29-38.
doi: 10.1109/FOCS.2007.56. |
[42] |
J. Townsend, C. P. Micucci, J. H. Hymel, V. Maroulas and K. D. Vogiatzis, Representation of molecular structures with persistent homology for machine learning applications in chemistry, Nature Communications, 11 (2020).
doi: 10.1038/s41467-020-17035-5. |
[43] |
G. Voronoi,
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 133 (1908), 97-102.
doi: 10.1515/crll.1908.133.97. |
[44] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, Int. J. Numer. Methods Biomed. Eng., 36 (2020), 27pp.
doi: 10.1002/cnm.3376. |
[45] |
K. Xia, K. Opron and G.-W. Wei, Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM), J. Chem. Phys., 143 (2015).
doi: 10.1063/1.4936132. |
[46] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility, and folding, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[47] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong,
3D hodge decompositions of edge-and face-based vector fields., ACM Transactions on Graphics (TOG), 38 (2019), 1-13.
doi: 10.1145/3355089.3356546. |
[48] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 38pp.
doi: 10.1007/s11538-020-00783-2. |
[49] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete Comput. Geom., 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |

























![]() |
![]() |
![]() |
![]() |
[1] |
George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017 |
[2] |
Tyrus Berry, Timothy Sauer. Consistent manifold representation for topological data analysis. Foundations of Data Science, 2019, 1 (1) : 1-38. doi: 10.3934/fods.2019001 |
[3] |
Erik Carlsson, John Gunnar Carlsson, Shannon Sweitzer. Applying topological data analysis to local search problems. Foundations of Data Science, 2022 doi: 10.3934/fods.2022006 |
[4] |
Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005 |
[5] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[6] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005 |
[7] |
Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 |
[8] |
Jelena Grbić, Jie Wu, Kelin Xia, Guo-Wei Wei. Aspects of topological approaches for data science. Foundations of Data Science, 2022, 4 (2) : 165-216. doi: 10.3934/fods.2022002 |
[9] |
Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103 |
[10] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[11] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[12] |
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991 |
[13] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[14] |
Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275 |
[15] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026 |
[16] |
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023 |
[17] |
Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001 |
[18] |
Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002 |
[19] |
Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014 |
[20] |
Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]