
-
Previous Article
Feedback particle filter for collective inference
- FoDS Home
- This Issue
-
Next Article
An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation
A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation
1. | Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA |
2. | University of North Carolina, 130 Mason Farm Road Chapel Hill, NC 27599, USA |
3. | University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA |
4. | Arizona State University, 1151 S Forest Ave, Tempe, AZ 85281, USA |
5. | Smith College, Northampton, MA 01063, USA |
6. | NORCE Norwegian Research Centre AS, Nygårdsporten 112, 5008 Bergen, Norway |
The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number ($ R_t $), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an $R_t(n)$ for the $n^{th}$ population. We do this with three distinct approaches, (1) using the same contact matrices and prior $R_t(n)$ for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to $R_t(n)$. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.
References:
[1] |
Cyberstates 2020: The definitive guide to the U.S. tech industry and tech wrokforce, URL https://www.cyberstates.org, Last accessed 2021-04-13. |
[2] |
Disparities in Wealth by Race and Ethnicity in the 2019 Survey of Consumer Finances, URL https://www.federalreserve.gov/econres/notes/feds-notes/disparities-in-wealth-by-race-and-ethnicity-in-the-2019-survey-of-consumer-finances-20200928.htm, Last accessed 2021-04-13. |
[3] |
Diversity in high tech, URL https://www.eeoc.gov/special-report/diversity-high-tech, Last accessed 2021-04-13. |
[4] |
Economy at a Glance: California, URL https://data.bls.gov/timeseries/LASST060000000000006?, Last accessed 2021-04-13. |
[5] |
IHME COVID-19 estimates, URL http://www.healthdata.org/covid/data-downloads, Last accessed 2021-04-13. |
[6] |
Options to Reduce Quarantine for Contacts of Persons with SARS-CoV-2 Infection Using Symptom Monitoring and Diagnostic Testing, URL https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-options-to-reduce-quarantine.html, Last accessed 2021-04-13. |
[7] |
Racial Data Dashboard, 2021, URL https://covidtracking.com/race/dashboard, Last accessed 2021-04-13. |
[8] |
Risk for covid-19 infection, hospitalization, and death by race/ethnicity, URL https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html, Last accessed 2021-08-03. |
[9] |
Rt COVID-19, URL https://rt.live/, Last accessed 2021-04-13. |
[10] |
Statistics and Church Facts | Total Church Membership, URL http://newsroom.churchofjesuschrist.org/facts-and-statistics/state/utah, Last accessed 2021-07-31. |
[11] |
E. Armstrong, M. Runge and J. Gerardin, Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation, Infectious Disease Modelling. |
[12] |
M. Asch, M. Bocquet and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, 2016.
doi: 10.1137/1.9781611974546.pt1. |
[13] |
L. M. A. Bettencourt, R. M. Ribeiro, G. Chowell, T. Lant and C. Castillo-Chavez, Towards real time epidemiology: Data assimilation, modeling and anomaly detection of health surveillance data streams, Lecture Notes in Computer Science Intelligence and Security Informatics: Biosurveillance, 79–90.
doi: 10.1007/978-3-540-72608-1_8. |
[14] |
M. Bocquet and P. Sakov,
An iterative ensemble Kalman smoother, Quarterly Journal of the Royal Meteorological Society, 140 (2013), 1521-1535.
doi: 10.1002/qj.2236. |
[15] |
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview on methods issues and perspectives, WCC, 9 2018.
doi: 10.1002/wcc.535. |
[16] |
A. A. Emerick and A. C. Reynolds,
Ensemble smoother with multiple data assimilation, Computers & Geosciences, 55 (2013), 3-15.
doi: 10.1016/j.cageo.2012.03.011. |
[17] |
G. Evensen,
Analysis of iterative ensemble smoothers for solving inverse problems, Computational Geosciences, 22 (2018), 885-908.
doi: 10.1007/s10596-018-9731-y. |
[18] |
G. Evensen, J. Amezcua, M. Bocquet, A. Carrassi, A. Farchi, A. Fowler, P. L. Houtekamer, C. K. Jones, R. J. de Moraes, M. Pulido, C. Sampson and F. C. Vossepoel, An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation, Foundations of Data Science, (2020).
doi: 10.3934/fods.2021001. |
[19] |
J. R. Eyre, S. J. English and M. Forsythe,
Assimilation of satellite data in numerical weather prediction. part i: The early years, Quarterly Journal of the Royal Meteorological Society, 146 (2019), 49-68.
doi: 10.1002/qj.3654. |
[20] |
A. L. Garcia-Basteiro, G. Moncunill, M. Tortajada, M. Vidal, C. Guinovart, A. Jiménez, R. Santano, S. Sanz, S. Méndez, A. Llupià, R. Aguilar, S. Alonso, D. Barrios, C. Carolis, P. Cisteró, E. Chóliz, A. Cruz, S. Fochs, C. Jairoce, J. Hecht, M. Lamoglia, M. J. Martínez, R. A. Mitchell, N. Ortega, N. Pey, L. Puyol, M. Ribes, N. Rosell, P. Sotomayor, S. Torres, S. Williams, S. Barroso, A. Vilella, J. Muñoz, A. Trilla, P. Varela, A. Mayor and C. Dobaño, Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large spanish reference hospital, Nature Communications, 11 (2020), Article number: 3500.
doi: 10.1038/s41467-020-17318-x. |
[21] |
C. G. Grijalva, M. A. Rolfes, Y. Zhu, H. Q. McLean, K. E. Hanson, E. A. Belongia, N. B. Halasa, A. Kim, C. Reed, A. M. Fry and H. K. Talbot, Transmission of SARS-COV-2 infections in households - Tennessee and Wisconsin, April-September 2020, MMWR. Morbidity and Mortality Weekly Report, 69 (2020), 1631–1634.
doi: 10.15585/mmwr.mm6944e1. |
[22] |
P. L. Houtekamer and F. Zhang,
Review of the ensemble kalman filter for atmospheric data assimilation, Monthly Weather Review, 144 (2016), 4489-4532.
doi: 10.1175/MWR-D-15-0440.1. |
[23] |
J. P. A. Ioannidis, Infection fatality rate of COVID-19 inferred from seroprevalence data, Bulletin of the World Health Organization, 99 (2020), 19–33F.
doi: 10.2471/blt.20.265892. |
[24] |
J. Jeppesen, Fact sheet: Reanalysis, URL https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis, 2020, Last accessed 2021-07-31. |
[25] |
E. J. Kostelich, Y. Kuang, J. M. Mcdaniel, N. Z. Moore, N. L. Martirosyan and M. C. Preul,
Accurate state estimation from uncertain data and models: An application of data assimilation to mathematical models of human brain tumors, Biology Direct, 6 (2011), 64.
doi: 10.1186/1745-6150-6-64. |
[26] |
W. Lieberman-Cribbin, S. Tuminello, R. M. Flores and E. Taioli,
Disparities in COVID-19 testing and positivity in new york city, American Journal of Preventive Medicine, 59 (2020), 326-332.
doi: 10.1016/j.amepre.2020.06.005. |
[27] |
N. Narea, Immigrants have helped keep essential services running. But those without legal status have no financial safety net, URL https://www.vox.com/2020/5/5/21244630/undocumented-immigrants-coronavirus-relief-cares-act, 2020, Last accessed 2021-07-31. |
[28] |
I. Pathak, Y. Choi, D. Jiao, D. Yeung and L. Liu, Racial-ethnic disparities in case fatality ratio narrowed after age standardization: A call for race-ethnicity-specific age distributions in state covid-19 data, MedRxiv, (2020).
doi: 10.1101/2020.10.01.20205377. |
[29] |
J. Skjervheim, G. Evensen, J. Hove and J. G. Vabø, An ensemble smoother for assisted history matching, SPE, (2011), 141929.
doi: 10.2118/141929-MS. |
[30] |
A. S. Stordal and A. H. Elsheikh,
Iterative ensemble smoothers in the annealed importance sampling framework, Advances in Water Resources, 86 (2015), 231-239.
doi: 10.1016/j.advwatres.2015.09.030. |
[31] |
G. Vernieres, A. Anis, R. N. Miller and L. L. Ehret,
Generalized inversion of thermistor-chain data and a layer model of lake kinneret, Ocean Modelling, 12 (2006), 112-139.
doi: 10.1016/j.ocemod.2005.04.004. |
[32] |
Z. Wu, T. Phan, J. Baez, Y. Kuang and E. J. Kostelich,
Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy, Mathematical Biosciences and Engineering, 16 (2019), 3512-3536.
doi: 10.3934/mbe.2019176. |
show all references
References:
[1] |
Cyberstates 2020: The definitive guide to the U.S. tech industry and tech wrokforce, URL https://www.cyberstates.org, Last accessed 2021-04-13. |
[2] |
Disparities in Wealth by Race and Ethnicity in the 2019 Survey of Consumer Finances, URL https://www.federalreserve.gov/econres/notes/feds-notes/disparities-in-wealth-by-race-and-ethnicity-in-the-2019-survey-of-consumer-finances-20200928.htm, Last accessed 2021-04-13. |
[3] |
Diversity in high tech, URL https://www.eeoc.gov/special-report/diversity-high-tech, Last accessed 2021-04-13. |
[4] |
Economy at a Glance: California, URL https://data.bls.gov/timeseries/LASST060000000000006?, Last accessed 2021-04-13. |
[5] |
IHME COVID-19 estimates, URL http://www.healthdata.org/covid/data-downloads, Last accessed 2021-04-13. |
[6] |
Options to Reduce Quarantine for Contacts of Persons with SARS-CoV-2 Infection Using Symptom Monitoring and Diagnostic Testing, URL https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-options-to-reduce-quarantine.html, Last accessed 2021-04-13. |
[7] |
Racial Data Dashboard, 2021, URL https://covidtracking.com/race/dashboard, Last accessed 2021-04-13. |
[8] |
Risk for covid-19 infection, hospitalization, and death by race/ethnicity, URL https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html, Last accessed 2021-08-03. |
[9] |
Rt COVID-19, URL https://rt.live/, Last accessed 2021-04-13. |
[10] |
Statistics and Church Facts | Total Church Membership, URL http://newsroom.churchofjesuschrist.org/facts-and-statistics/state/utah, Last accessed 2021-07-31. |
[11] |
E. Armstrong, M. Runge and J. Gerardin, Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation, Infectious Disease Modelling. |
[12] |
M. Asch, M. Bocquet and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, 2016.
doi: 10.1137/1.9781611974546.pt1. |
[13] |
L. M. A. Bettencourt, R. M. Ribeiro, G. Chowell, T. Lant and C. Castillo-Chavez, Towards real time epidemiology: Data assimilation, modeling and anomaly detection of health surveillance data streams, Lecture Notes in Computer Science Intelligence and Security Informatics: Biosurveillance, 79–90.
doi: 10.1007/978-3-540-72608-1_8. |
[14] |
M. Bocquet and P. Sakov,
An iterative ensemble Kalman smoother, Quarterly Journal of the Royal Meteorological Society, 140 (2013), 1521-1535.
doi: 10.1002/qj.2236. |
[15] |
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview on methods issues and perspectives, WCC, 9 2018.
doi: 10.1002/wcc.535. |
[16] |
A. A. Emerick and A. C. Reynolds,
Ensemble smoother with multiple data assimilation, Computers & Geosciences, 55 (2013), 3-15.
doi: 10.1016/j.cageo.2012.03.011. |
[17] |
G. Evensen,
Analysis of iterative ensemble smoothers for solving inverse problems, Computational Geosciences, 22 (2018), 885-908.
doi: 10.1007/s10596-018-9731-y. |
[18] |
G. Evensen, J. Amezcua, M. Bocquet, A. Carrassi, A. Farchi, A. Fowler, P. L. Houtekamer, C. K. Jones, R. J. de Moraes, M. Pulido, C. Sampson and F. C. Vossepoel, An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation, Foundations of Data Science, (2020).
doi: 10.3934/fods.2021001. |
[19] |
J. R. Eyre, S. J. English and M. Forsythe,
Assimilation of satellite data in numerical weather prediction. part i: The early years, Quarterly Journal of the Royal Meteorological Society, 146 (2019), 49-68.
doi: 10.1002/qj.3654. |
[20] |
A. L. Garcia-Basteiro, G. Moncunill, M. Tortajada, M. Vidal, C. Guinovart, A. Jiménez, R. Santano, S. Sanz, S. Méndez, A. Llupià, R. Aguilar, S. Alonso, D. Barrios, C. Carolis, P. Cisteró, E. Chóliz, A. Cruz, S. Fochs, C. Jairoce, J. Hecht, M. Lamoglia, M. J. Martínez, R. A. Mitchell, N. Ortega, N. Pey, L. Puyol, M. Ribes, N. Rosell, P. Sotomayor, S. Torres, S. Williams, S. Barroso, A. Vilella, J. Muñoz, A. Trilla, P. Varela, A. Mayor and C. Dobaño, Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large spanish reference hospital, Nature Communications, 11 (2020), Article number: 3500.
doi: 10.1038/s41467-020-17318-x. |
[21] |
C. G. Grijalva, M. A. Rolfes, Y. Zhu, H. Q. McLean, K. E. Hanson, E. A. Belongia, N. B. Halasa, A. Kim, C. Reed, A. M. Fry and H. K. Talbot, Transmission of SARS-COV-2 infections in households - Tennessee and Wisconsin, April-September 2020, MMWR. Morbidity and Mortality Weekly Report, 69 (2020), 1631–1634.
doi: 10.15585/mmwr.mm6944e1. |
[22] |
P. L. Houtekamer and F. Zhang,
Review of the ensemble kalman filter for atmospheric data assimilation, Monthly Weather Review, 144 (2016), 4489-4532.
doi: 10.1175/MWR-D-15-0440.1. |
[23] |
J. P. A. Ioannidis, Infection fatality rate of COVID-19 inferred from seroprevalence data, Bulletin of the World Health Organization, 99 (2020), 19–33F.
doi: 10.2471/blt.20.265892. |
[24] |
J. Jeppesen, Fact sheet: Reanalysis, URL https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis, 2020, Last accessed 2021-07-31. |
[25] |
E. J. Kostelich, Y. Kuang, J. M. Mcdaniel, N. Z. Moore, N. L. Martirosyan and M. C. Preul,
Accurate state estimation from uncertain data and models: An application of data assimilation to mathematical models of human brain tumors, Biology Direct, 6 (2011), 64.
doi: 10.1186/1745-6150-6-64. |
[26] |
W. Lieberman-Cribbin, S. Tuminello, R. M. Flores and E. Taioli,
Disparities in COVID-19 testing and positivity in new york city, American Journal of Preventive Medicine, 59 (2020), 326-332.
doi: 10.1016/j.amepre.2020.06.005. |
[27] |
N. Narea, Immigrants have helped keep essential services running. But those without legal status have no financial safety net, URL https://www.vox.com/2020/5/5/21244630/undocumented-immigrants-coronavirus-relief-cares-act, 2020, Last accessed 2021-07-31. |
[28] |
I. Pathak, Y. Choi, D. Jiao, D. Yeung and L. Liu, Racial-ethnic disparities in case fatality ratio narrowed after age standardization: A call for race-ethnicity-specific age distributions in state covid-19 data, MedRxiv, (2020).
doi: 10.1101/2020.10.01.20205377. |
[29] |
J. Skjervheim, G. Evensen, J. Hove and J. G. Vabø, An ensemble smoother for assisted history matching, SPE, (2011), 141929.
doi: 10.2118/141929-MS. |
[30] |
A. S. Stordal and A. H. Elsheikh,
Iterative ensemble smoothers in the annealed importance sampling framework, Advances in Water Resources, 86 (2015), 231-239.
doi: 10.1016/j.advwatres.2015.09.030. |
[31] |
G. Vernieres, A. Anis, R. N. Miller and L. L. Ehret,
Generalized inversion of thermistor-chain data and a layer model of lake kinneret, Ocean Modelling, 12 (2006), 112-139.
doi: 10.1016/j.ocemod.2005.04.004. |
[32] |
Z. Wu, T. Phan, J. Baez, Y. Kuang and E. J. Kostelich,
Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy, Mathematical Biosciences and Engineering, 16 (2019), 3512-3536.
doi: 10.3934/mbe.2019176. |













































Scalings | Matrix Parameters | ||||||||||||
$\alpha$ | $\beta$ | $\gamma$ | $\eta$ | $\epsilon$ | $\zeta$ | $\delta_1$ | $\delta_2$ | $\delta_3$ | $\xi_1$ | $\xi_2$ | $\xi_3$ | $\xi_4$ | |
DAP lock | 0.5 | 0.7 | 0.55 | 0.25 | 0.25 | 0.35 | 0.3 | 0.7 | 0.7 | 0.4 | 0.65 | 0.55 | 0.6 |
DAP post-lock | 0.7 | 0.8 | 0.7 | 0.3 | 0.3 | 0.4 | 0.6 | 0.85 | 0.7 | 0.85 | 0.7 | 0.65 | 0.65 |
NDAP lock | 0.5 | 0.7 | 0.5 | 0.2 | 0.2 | 0.3 | 0.3 | 0.6 | 0.7 | 0.4 | 0.6 | 0.5 | 0.6 |
NDAP post-lock | 0.7 | 0.8 | 0.7 | 0.25 | 0.25 | 0.35 | 0.6 | 0.7 | 0.75 | 0.7 | 0.7 | 0.65 | 0.65 |
Scalings | Matrix Parameters | ||||||||||||
$\alpha$ | $\beta$ | $\gamma$ | $\eta$ | $\epsilon$ | $\zeta$ | $\delta_1$ | $\delta_2$ | $\delta_3$ | $\xi_1$ | $\xi_2$ | $\xi_3$ | $\xi_4$ | |
DAP lock | 0.5 | 0.7 | 0.55 | 0.25 | 0.25 | 0.35 | 0.3 | 0.7 | 0.7 | 0.4 | 0.65 | 0.55 | 0.6 |
DAP post-lock | 0.7 | 0.8 | 0.7 | 0.3 | 0.3 | 0.4 | 0.6 | 0.85 | 0.7 | 0.85 | 0.7 | 0.65 | 0.65 |
NDAP lock | 0.5 | 0.7 | 0.5 | 0.2 | 0.2 | 0.3 | 0.3 | 0.6 | 0.7 | 0.4 | 0.6 | 0.5 | 0.6 |
NDAP post-lock | 0.7 | 0.8 | 0.7 | 0.25 | 0.25 | 0.35 | 0.6 | 0.7 | 0.75 | 0.7 | 0.7 | 0.65 | 0.65 |
Interventions | Information on Intervention Periods by State and the District of Columbia | |||||||||
AK | CA | CT | DC | DE | HI | MD | MI | UT | WA | |
Start date | 3/8/20 | 2/25/20 | 2/27/20 | 2/27/20 | 3/1/20 | 2/28/20 | 2/25/20 | 2/21/20 | 2/29/20 | 1/9/20 |
1st Phase | 3/19/20 | 3/19/20 | 3/19/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 |
2nd Phase | 5/27/20 | 5/27/20 | 5/27/20 | 5/29/20 | 5/31/20 | 5/15/20 | 5/15/20 | 5/19/20 | 5/5/20 | 5/28/20 |
Interventions | Information on Intervention Periods by State and the District of Columbia | |||||||||
AK | CA | CT | DC | DE | HI | MD | MI | UT | WA | |
Start date | 3/8/20 | 2/25/20 | 2/27/20 | 2/27/20 | 3/1/20 | 2/28/20 | 2/25/20 | 2/21/20 | 2/29/20 | 1/9/20 |
1st Phase | 3/19/20 | 3/19/20 | 3/19/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 | 3/17/20 |
2nd Phase | 5/27/20 | 5/27/20 | 5/27/20 | 5/29/20 | 5/31/20 | 5/15/20 | 5/15/20 | 5/19/20 | 5/5/20 | 5/28/20 |
Race/Ethnicity | Percentage of Population per State and the District of Columbia | |||||||||
AK | CA | CT | DC | DE | HI | MD | MI | UT | WA | |
AIAN | 0.15 | 0.076 | X | X | X | X | X | 0.005 | 0.023 | 0.01 |
Asian | 0.06 | 0.14 | 0.04 | 0.0435 | 0.045 | 0.38 | 0.06 | 0.035 | 0.038 | 0.08 |
Black | 0.03 | 0.06 | 0.1 | 0.4453 | 0.22 | 0.02 | 0.29 | 0.14 | 0.021 | 0.04 |
LatinX | X | 0.39 | 0.16 | 0.113 | 0.09 | X | 0.1 | X | 0.142 | 0.13 |
Multi | X | X | 0.02 | X | 0.02 | X | X | X | X | 0.05 |
NHPI | 0.01 | 0.039 | X | X | X | 0.1 | X | X | 0.016 | 0.008 |
Other | 0.08 | X | 0.01 | 0.01 | X | 0.24 | X | 0.03 | 0.01 | 0.005 |
White | 0.65 | 0.37 | 0.67 | 0.4196 | 0.62 | 0.25 | 0.51 | 0.78 | 0.78 | 0.69 |
Race/Ethnicity | Percentage of Population per State and the District of Columbia | |||||||||
AK | CA | CT | DC | DE | HI | MD | MI | UT | WA | |
AIAN | 0.15 | 0.076 | X | X | X | X | X | 0.005 | 0.023 | 0.01 |
Asian | 0.06 | 0.14 | 0.04 | 0.0435 | 0.045 | 0.38 | 0.06 | 0.035 | 0.038 | 0.08 |
Black | 0.03 | 0.06 | 0.1 | 0.4453 | 0.22 | 0.02 | 0.29 | 0.14 | 0.021 | 0.04 |
LatinX | X | 0.39 | 0.16 | 0.113 | 0.09 | X | 0.1 | X | 0.142 | 0.13 |
Multi | X | X | 0.02 | X | 0.02 | X | X | X | X | 0.05 |
NHPI | 0.01 | 0.039 | X | X | X | 0.1 | X | X | 0.016 | 0.008 |
Other | 0.08 | X | 0.01 | 0.01 | X | 0.24 | X | 0.03 | 0.01 | 0.005 |
White | 0.65 | 0.37 | 0.67 | 0.4196 | 0.62 | 0.25 | 0.51 | 0.78 | 0.78 | 0.69 |
Population | Prior, |
Post, |
Prior, |
Post, |
Prior, |
Post, |
Asian | 0.009 | 0.0074 | 0.020 | 0.0093 | 0.001 | 0.0070 |
Black | 0.009 | 0.0126 | 0.020 | 0.0157 | 0.001 | 0.0084 |
LatinX | 0.009 | 0.0213 | 0.020 | 0.0246 | 0.001 | 0.0147 |
Multi | 0.009 | 0.0103 | 0.020 | 0.0104 | 0.001 | 0.0086 |
Other | 0.009 | 0.0065 | 0.020 | 0.0042 | 0.001 | 0.0065 |
White | 0.009 | 0.0229 | 0.020 | 0.0271 | 0.001 | 0.0134 |
Population | Prior, |
Post, |
Prior, |
Post, |
Prior, |
Post, |
Asian | 0.009 | 0.0074 | 0.020 | 0.0093 | 0.001 | 0.0070 |
Black | 0.009 | 0.0126 | 0.020 | 0.0157 | 0.001 | 0.0084 |
LatinX | 0.009 | 0.0213 | 0.020 | 0.0246 | 0.001 | 0.0147 |
Multi | 0.009 | 0.0103 | 0.020 | 0.0104 | 0.001 | 0.0086 |
Other | 0.009 | 0.0065 | 0.020 | 0.0042 | 0.001 | 0.0065 |
White | 0.009 | 0.0229 | 0.020 | 0.0271 | 0.001 | 0.0134 |
Population | Prior, |
Post, |
Prior, |
Post, |
Asian | 0.020 | 0.0282 | 0.020 | 0.0199 |
Black | 0.020 | 0.0337 | 0.020 | 0.0199 |
LatinX | 0.020 | 0.0317 | 0.020 | 0.0200 |
Multi | 0.020 | 0.0316 | 0.020 | 0.0202 |
Other | 0.020 | 0.0299 | 0.020 | 0.0204 |
White | 0.020 | 0.0259 | 0.020 | 0.0195 |
Population | Prior, |
Post, |
Prior, |
Post, |
Asian | 0.020 | 0.0282 | 0.020 | 0.0199 |
Black | 0.020 | 0.0337 | 0.020 | 0.0199 |
LatinX | 0.020 | 0.0317 | 0.020 | 0.0200 |
Multi | 0.020 | 0.0316 | 0.020 | 0.0202 |
Other | 0.020 | 0.0299 | 0.020 | 0.0204 |
White | 0.020 | 0.0259 | 0.020 | 0.0195 |
Population | Prior, |
Post, |
Prior, |
Post, |
Prior, |
|
Asian | 0.0090 | 0.0101 | 0.0090 | 0.0091 | 0.0090 | 0.0249 |
Black | 0.0200 | 0.0226 | 0.0200 | 0.0201 | 0.0200 | 0.0371 |
LatinX | 0.0090 | 0.0211 | 0.0090 | 0.0092 | 0.0090 | 0.0299 |
Multi | 0.0090 | 0.0097 | 0.0090 | 0.0092 | 0.0090 | 0.0285 |
Other | 0.0090 | 0.0053 | 0.0090 | 0.0093 | 0.0090 | 0.0234 |
White | 0.0090 | 0.0248 | 0.0090 | 0.0090 | 0.0090 | 0.0256 |
Population | Prior, |
Post, |
Prior, |
Post, |
Prior, |
|
Asian | 0.0090 | 0.0101 | 0.0090 | 0.0091 | 0.0090 | 0.0249 |
Black | 0.0200 | 0.0226 | 0.0200 | 0.0201 | 0.0200 | 0.0371 |
LatinX | 0.0090 | 0.0211 | 0.0090 | 0.0092 | 0.0090 | 0.0299 |
Multi | 0.0090 | 0.0097 | 0.0090 | 0.0092 | 0.0090 | 0.0285 |
Other | 0.0090 | 0.0053 | 0.0090 | 0.0093 | 0.0090 | 0.0234 |
White | 0.0090 | 0.0248 | 0.0090 | 0.0090 | 0.0090 | 0.0256 |
Population | Prior, |
Post, |
Asian | 0.0900 | 0.0089 |
Black | 0.0900 | 0.0100 |
LatinX | 0.0900 | 0.0090 |
Multi | 0.0900 | 0.0093 |
Other | 0.0900 | 0.0094 |
White | 0.0900 | 0.0094 |
Population | Prior, |
Post, |
Asian | 0.0900 | 0.0089 |
Black | 0.0900 | 0.0100 |
LatinX | 0.0900 | 0.0090 |
Multi | 0.0900 | 0.0093 |
Other | 0.0900 | 0.0094 |
White | 0.0900 | 0.0094 |
Parameter | First guess | Description |
5.5 | Incubation period | |
3.8 | Infection time | |
14.0 | Recovery time mild cases | |
5.0 | Recovery time severe cases | |
6.0 | Time until hospitalization | |
16.0 | Time until death | |
0.009 | Case fatality rate | |
0.039 | Hospitalization rate (severe cases) | |
0.4 | Fraction of fatally ill going to hospital |
Parameter | First guess | Description |
5.5 | Incubation period | |
3.8 | Infection time | |
14.0 | Recovery time mild cases | |
5.0 | Recovery time severe cases | |
6.0 | Time until hospitalization | |
16.0 | Time until death | |
0.009 | Case fatality rate | |
0.039 | Hospitalization rate (severe cases) | |
0.4 | Fraction of fatally ill going to hospital |
Age group | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Age range | 0–5 | 6–12 | 13–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 | 70–79 | 80–89 | 90–105 |
Population | 351159 | 451246 | 446344 | 711752 | 730547 | 723663 | 703830 | 582495 | 435834 | 185480 | 45230 |
p–mild | 1.0000 | 1.0000 | 0.9998 | 0.9913 | 0.9759 | 0.9686 | 0.9369 | 0.9008 | 0.8465 | 0.8183 | 0.8183 |
p–severe | 0.0000 | 0.0000 | 0.0002 | 0.0078 | 0.0232 | 0.0295 | 0.0570 | 0.0823 | 0.1160 | 0.1160 | 0.1160 |
p–fatal | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0009 | 0.0019 | 0.0061 | 0.0169 | 0.0375 | 0.0656 | 0.0656 |
Age group | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Age range | 0–5 | 6–12 | 13–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 | 70–79 | 80–89 | 90–105 |
Population | 351159 | 451246 | 446344 | 711752 | 730547 | 723663 | 703830 | 582495 | 435834 | 185480 | 45230 |
p–mild | 1.0000 | 1.0000 | 0.9998 | 0.9913 | 0.9759 | 0.9686 | 0.9369 | 0.9008 | 0.8465 | 0.8183 | 0.8183 |
p–severe | 0.0000 | 0.0000 | 0.0002 | 0.0078 | 0.0232 | 0.0295 | 0.0570 | 0.0823 | 0.1160 | 0.1160 | 0.1160 |
p–fatal | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0009 | 0.0019 | 0.0061 | 0.0169 | 0.0375 | 0.0656 | 0.0656 |
[1] |
Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022128 |
[2] |
Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2021, 3 (3) : 413-477. doi: 10.3934/fods.2021001 |
[3] |
Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093 |
[4] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[5] |
Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108 |
[6] |
Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088 |
[7] |
Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154 |
[8] |
Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5367-5387. doi: 10.3934/dcdsb.2021278 |
[9] |
Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021234 |
[10] |
Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016 |
[11] |
Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008 |
[12] |
Zaineb Chelly Dagdia, Ana Cristina Simões e Silva. Effects of COVID-19 pandemic on education and society. STEM Education, 2022, 2 (3) : 197-220. doi: 10.3934/steme.2022013 |
[13] |
Jiangqi Wu, Linjie Wen, Jinglai Li. Resampled ensemble Kalman inversion for Bayesian parameter estimation with sequential data. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 837-850. doi: 10.3934/dcdss.2021045 |
[14] |
Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261 |
[15] |
Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601 |
[16] |
Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations and Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002 |
[17] |
Jules Guillot, Emmanuel Frénod, Pierre Ailliot. Physics informed model error for data assimilation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022059 |
[18] |
Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026 |
[19] |
Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020 |
[20] |
Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022, 9 (3) : 229-239. doi: 10.3934/jdg.2022008 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]