This papers shows that nonlinear filter in the case of deterministic dynamics is stable with respect to the initial conditions under the conditions that observations are sufficiently rich, both in the context of continuous and discrete time filters. Earlier works on the stability of the nonlinear filters are in the context of stochastic dynamics and assume conditions like compact state space or time independent observation model, whereas we prove filter stability for deterministic dynamics with more general assumptions on the state space and observation process. We give several examples of systems that satisfy these assumptions. We also show that the asymptotic structure of the filtering distribution is related to the dynamical properties of the signal.
Citation: |
Figure 1.
Dependence of
[1] |
B. D. O. Anderson and J. B. Moore, New results in linear system stability, SIAM J. Control, 7 (1969), 398-414.
doi: 10.1137/0307029.![]() ![]() ![]() |
[2] |
A. Apte, M. Hairer, A. M. Stuart and J. Voss, Sampling the posterior: An approach to non-Gaussian data assimilation, Phys. D, 230 (2007), 50–64.
doi: 10.1016/j.physd.2006.06.009.![]() ![]() ![]() |
[3] |
M. Asch, M. Bocquet and M. Nodet, Data Assimilation. Methods, Algorithms, and Applications, Fundamentals of Algorithms, 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974546.pt1.![]() ![]() ![]() |
[4] |
R. Atar, Exponential stability for nonlinear filtering of diffusion processes in a noncompact domain, Ann. Probab., 26 (1998), 1552-1574.
doi: 10.1214/aop/1022855873.![]() ![]() ![]() |
[5] |
R. Atar and O. Zeitouni, Exponential stability for nonlinear filtering, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 697-725.
doi: 10.1016/S0246-0203(97)80110-0.![]() ![]() ![]() |
[6] |
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stochastic Modelling and Applied Probability, 60, Springer, New York, 2009.
doi: 10.1007/978-0-387-76896-0.![]() ![]() ![]() |
[7] |
L. Barreira and Y. Pesin, Introduction to Smooth Ergodic Theory, Graduate Studies in Mathematics, 148, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/gsm/148.![]() ![]() ![]() |
[8] |
P. Billingsley, Convergence of Probability Measures, 2$^{nd}$ edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999.
doi: 10.1002/9780470316962.![]() ![]() ![]() |
[9] |
A. N. Bishop and P. Del Moral, On the stability of Kalman–Bucy diffusion processes, SIAM J. Control Optim., 55 (2017), 4015-4047.
doi: 10.1137/16M1102707.![]() ![]() ![]() |
[10] |
M. Bocquet, K. S. Gurumoorthy, A. Apte, A. Carrassi, C. Grudzien and C. K. R. T. Jones, Degenerate Kalman filter error covariances and their convergence onto the unstable subspace, SIAM/ASA J. Uncertain. Quantif., 5 (2017), 304-333.
doi: 10.1137/16M1068712.![]() ![]() ![]() |
[11] |
A. Budhiraja, Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 919-941.
doi: 10.1016/S0246-0203(03)00022-0.![]() ![]() ![]() |
[12] |
A. Budhiraja and D. Ocone, Exponential stability in discrete-time filtering for non-ergodic signals, Stochastic Process. Appl., 82 (1999), 245-257.
doi: 10.1016/S0304-4149(99)00032-0.![]() ![]() ![]() |
[13] |
A. Budhiraja and D. Ocone, Exponential stability of discrete-time filters for bounded observation noise, Systems Control Lett., 30 (1997), 185-193.
doi: 10.1016/S0167-6911(97)00012-1.![]() ![]() ![]() |
[14] |
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIREs Clim. Change, 9 (2018).
doi: 10.1002/wcc.535.![]() ![]() |
[15] |
F. Cérou, Long Time Asymptotics for Some Dynamical Noise Free Non-Linear Filtering Problems, New Cases, Research Report, RR-2541, INRIA, 1995. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.1616&rep=rep1&type=pdf.
![]() |
[16] |
F. Cérou, Long time behavior for some dynamical noise free nonlinear filtering problems, SIAM J. Control Optim., 38 (2000), 1086-1101.
doi: 10.1137/S0363012995290124.![]() ![]() ![]() |
[17] |
P. Chigansky, Stability of nonlinear filters: A survey, Mini-Course Lecture Notes, Petropolis, Brazil, 2006. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.1819&rep=rep1&type=pdf.
![]() |
[18] |
P. Chigansky, R. Liptser and R. Van Handel, Intrinsic methods in filter stability, in Oxford Handbook of Nonlinear Filtering, Oxford Univ. Press, Oxford, 2011, 319-351.
![]() ![]() |
[19] |
J. M. C. Clark, D. L. Ocone and C. Coumarbatch, Relative entropy and error bounds for filtering of Markov processes, Math. Control Signals Systems, 12 (1999), 346-360.
doi: 10.1007/PL00009856.![]() ![]() ![]() |
[20] |
A. D'Aristotile, P. Diaconis and D. Freedman, On merging of probabilities, Sankhyā Ser. A, 50 (1988), 363–380.
![]() ![]() |
[21] |
E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.
doi: 10.1088/0951-7715/6/6/014.![]() ![]() ![]() |
[22] |
H. E. Gollwitzer, A note on a functional inequality, Proc. Amer. Math. Soc., 23 (1969), 642-647.
doi: 10.1090/S0002-9939-1969-0247016-9.![]() ![]() ![]() |
[23] |
K. S. Gurumoorthy, C. Grudzien, A. Apte, A. Carrassi and C. K. R. T. Jones, Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution, SIAM J. Control Optim., 55 (2017), 741-759.
doi: 10.1137/15M1025839.![]() ![]() ![]() |
[24] |
G. Kallianpur, Stochastic Filtering Theory, Applications of Mathematics, 13, Springer-Verlag, New York-Berlin, 1980.
doi: 10.1007/978-1-4757-6592-2.![]() ![]() ![]() |
[25] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[26] |
D. T. B. Kelly, K. J. H. Law and A. M. Stuart, Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity, 27 (2014), 2579-2604.
doi: 10.1088/0951-7715/27/10/2579.![]() ![]() ![]() |
[27] |
Koro, Uniform expansivity., Available from: https://planetmath.org/UniformExpansivity.
![]() |
[28] |
K. Law, A. Stuart and K. Zygalakis, Data Assimilation. A Mathematical Introduction, Texts in Applied Mathematics, 62, Springer, Cham, 2015.
doi: 10.1007/978-3-319-20325-6.![]() ![]() ![]() |
[29] |
M. Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1648, Springer, Berlin, 1996,165–294.
doi: 10.1007/BFb0095676.![]() ![]() ![]() |
[30] |
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.![]() ![]() ![]() |
[31] |
E. N. Lorenz, Predictability - A problem partly solved, in Predictability of Weather and Climate, Cambridge University Press, 2006, 40-58.
doi: 10.1017/CBO9780511617652.004.![]() ![]() |
[32] |
C. McDonald and S. Yüksel, Converse results on filter stability criteria and stochastic non-linear observability, preprint, arXiv: 1812.01772.
![]() |
[33] |
B. Ni and Q. Zhang, Stability of the Kalman filter for continuous time output error systems, Systems Control Lett., 94 (2016), 172-180.
doi: 10.1016/j.sysconle.2016.06.006.![]() ![]() ![]() |
[34] |
D. Ocone and E. Pardoux, Asymptotic stability of the optimal filter with respect to its initial condition, SIAM J. Control Optim., 34 (1996), 226-243.
doi: 10.1137/S0363012993256617.![]() ![]() ![]() |
[35] |
D. L. Ocone, Asymptotic stability of Beneš filters, Stochastic Anal. Appl., 17 (1999), 1053-1074.
doi: 10.1080/07362999908809648.![]() ![]() ![]() |
[36] |
T. N. Palmer, Stochastic weather and climate models, Nature Reviews Physics, 1 (2019), 463-471.
doi: 10.1038/s42254-019-0062-2.![]() ![]() |
[37] |
A. S. Reddy, A. Apte and S. Vadlamani, Asymptotic properties of linear filter for deterministic processes, Systems Control Lett., 139 (2020), 8 pp.
doi: 10.1016/j.sysconle.2020.104676.![]() ![]() ![]() |
[38] |
S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, New York, 2015.
doi: 10.1017/CBO9781107706804.![]() ![]() ![]() |
[39] |
M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4757-1947-5.![]() ![]() ![]() |
[40] |
R. van Handel, Filtering, Stability, and Robustness, Ph.D thesis, California Institute of Technology, 2007.
![]() ![]() |
[41] |
R. van Handel, Nonlinear filtering and systems theory, in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS Semi-Plenary Paper), 2010. Available from: https://web.math.princeton.edu/rvan/mtns10.pdf.
![]() |
[42] |
R. van Handel, Observability and nonlinear filtering, Probab. Theory Related Fields, 145 (2009), 35-74.
doi: 10.1007/s00440-008-0161-y.![]() ![]() ![]() |
[43] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[44] |
D. Williams, Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511813658.![]() ![]() ![]() |
[45] |
J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics, 18, Oxford University Press, Oxford, 2008.
![]() ![]() |