February  2007, 1(1): 29-46. doi: 10.3934/ipi.2007.1.29

Iteratively solving linear inverse problems under general convex constraints

1. 

Princeton University, PACM, Washington Road, Princeton, NJ 08544-1000, United States

2. 

Konrad--Zuse--Institute Berlin, Takustr. 7, D-14195 Berlin-Dahlem, Germany

3. 

Department of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1555, United States

Received  August 2006 Revised  September 2006 Published  January 2007

We consider linear inverse problems where the solution is assumed to fulfill some general homogeneous convex constraint. We develop an algorithm that amounts to a projected Landweber iteration and that provides and iterative approach to the solution of this inverse problem. For relatively moderate assumptions on the constraint we can always prove weak convergence of the iterative scheme. In certain cases, i.e. for special families of convex constraints, weak convergence implies norm convergence. The presented approach covers a wide range of problems, e.g. Besov-- or BV--restoration for which we present also numerical experiments in the context of image processing.
Citation: Ingrid Daubechies, Gerd Teschke, Luminita Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems and Imaging, 2007, 1 (1) : 29-46. doi: 10.3934/ipi.2007.1.29
[1]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems and Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[2]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[3]

Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems and Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018

[4]

David Maxwell. Kozlov-Maz'ya iteration as a form of Landweber iteration. Inverse Problems and Imaging, 2014, 8 (2) : 537-560. doi: 10.3934/ipi.2014.8.537

[5]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems and Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[6]

Xiaoman Liu, Jijun Liu. Image restoration from noisy incomplete frequency data by alternative iteration scheme. Inverse Problems and Imaging, 2020, 14 (4) : 583-606. doi: 10.3934/ipi.2020027

[7]

Barbara Kaltenbacher, Ivan Tomba. Enhanced choice of the parameters in an iteratively regularized Newton-Landweber iteration in Banach space. Conference Publications, 2015, 2015 (special) : 686-695. doi: 10.3934/proc.2015.0686

[8]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[9]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[10]

Xiaojuan Deng, Xing Zhao, Mengfei Li, Hongwei Li. Limited-angle CT reconstruction with generalized shrinkage operators as regularizers. Inverse Problems and Imaging, 2021, 15 (6) : 1287-1306. doi: 10.3934/ipi.2021019

[11]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[12]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[13]

Haïm Brezis. Remarks on some minimization problems associated with BV norms. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7013-7029. doi: 10.3934/dcds.2019242

[14]

Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems and Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337

[15]

Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033

[16]

Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567

[17]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[18]

Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395

[19]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[20]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (76)

Other articles
by authors

[Back to Top]