May  2007, 1(2): 399-422. doi: 10.3934/ipi.2007.1.399

Model distortions in Bayesian MAP reconstruction


CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. President Wilson, F-94230 Cachan, France

Received  December 2006 Published  April 2007

The Bayesian approach and especially the maximum a posteriori (MAP) estimator is most widely used to solve various problems in signal and image processing, such as denoising and deblurring, zooming, and reconstruction. The reason is that it provides a coherent statistical framework to combine observed (noisy) data with prior information on the unknown signal or image which is optimal in a precise statistical sense. This paper presents an objective critical analysis of the MAP approach. It shows that the MAP solutions substantially deviate from both the data-acquisition model and the prior model that underly the MAP estimator. This is explained theoretically using several analytical properties of the MAP solutions and is illustrated using examples and experiments. It follows that the MAP approach is not relevant in the applications where the data-observation and the prior models are accurate. The construction of solutions (estimators) that respect simultaneously two such models remains an open question.
Citation: Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems and Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, Bingzhe Wei. RWRM: Residual Wasserstein regularization model for image restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1307-1332. doi: 10.3934/ipi.2020069


Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems and Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171


Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems and Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337


Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems and Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11


Kokum R. De Silva, Shigetoshi Eda, Suzanne Lenhart. Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1001-1017. doi: 10.3934/mbe.2017052


Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang. Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8 (3) : i-ii. doi: 10.3934/nhm.2013.8.3i


W. Y. Tan, L.-J. Zhang, C.W. Chen. Stochastic modeling of carcinogenesis: State space models and estimation of parameters. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 297-322. doi: 10.3934/dcdsb.2004.4.297


Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems and Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447


Rafail Krichevskii and Vladimir Potapov. Compression and restoration of square integrable functions. Electronic Research Announcements, 1996, 2: 42-49.


Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013


Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations and Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007


Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521


Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733


Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems and Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661


Ying Zhang, Xuhua Ren, Bryan Alexander Clifford, Qian Wang, Xiaoqun Zhang. Image fusion network for dual-modal restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1409-1419. doi: 10.3934/ipi.2021067


Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105


Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006


Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403


Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255


Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

2021 Impact Factor: 1.483


  • PDF downloads (148)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]