
Previous Article
Unique determination of a cavity in an elastic plate by two boundary measurements
 IPI Home
 This Issue

Next Article
A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media
A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group
1.  Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States, United States 
[1] 
Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649653. doi: 10.3934/ipi.2010.4.649 
[2] 
Alberto Ibort, Alberto LópezYela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893928. doi: 10.3934/ipi.2021021 
[3] 
Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879891. doi: 10.3934/ipi.2011.5.879 
[4] 
Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 10291039. doi: 10.3934/cpaa.2016.15.1029 
[5] 
Ali Gholami, Mauricio D. Sacchi. Timeinvariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501519. doi: 10.3934/ipi.2017023 
[6] 
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721734. doi: 10.3934/ipi.2010.4.721 
[7] 
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 2746. doi: 10.3934/ipi.2013.7.27 
[8] 
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 18011816. doi: 10.3934/dcds.2015.35.1801 
[9] 
JeanFrançois Crouzet. 3D coded aperture imaging, illposedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341353. doi: 10.3934/ipi.2011.5.341 
[10] 
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231261. doi: 10.3934/ipi.2019013 
[11] 
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 126. doi: 10.3934/ipi.2019061 
[12] 
Dan Jane, Gabriel P. Paternain. On the injectivity of the Xray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471487. doi: 10.3934/dcds.2009.24.471 
[13] 
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229237. doi: 10.3934/ipi.2018009 
[14] 
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317335. doi: 10.3934/ipi.2015.9.317 
[15] 
Siamak RabieniaHaratbar. Support theorem for the LightRay transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293314. doi: 10.3934/ipi.2018013 
[16] 
François Rouvière. Xray transform on DamekRicci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713720. doi: 10.3934/ipi.2010.4.713 
[17] 
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619630. doi: 10.3934/ipi.2010.4.619 
[18] 
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453464. doi: 10.3934/ipi.2009.3.453 
[19] 
Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems and Imaging, 2015, 9 (1) : 143161. doi: 10.3934/ipi.2015.9.143 
[20] 
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157165. doi: 10.3934/jgm.2017006 
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]