August  2007, 1(3): 557-575. doi: 10.3934/ipi.2007.1.557

Quantum TV and applications in image processing

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

2. 

Department of Mathematics, University of Kentucky, Lexington, KY 40515, United States

Received  February 2007 Revised  April 2007 Published  July 2007

Closely inspired by the total variation (TV) model of Rudin, Osher and Fatemi [Physica D, 60:259-268,1992], we propose the quantized or quantum TV model (either with a preassigned quanta set $Q$ or without), and study the associated mathematical properties and computational algorithms. An algorithm based on stochastic or Markovian gradient descent is proposed to handle the discrete programming nature of the quantum TV model, which further leads to a two-step iterative algorithm for the computationally more challenging free quantum TV model. We also demonstrate several major applications of the proposed models and algorithms in bar code scanning, image quantization, and image segmentation.
Citation: Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557
[1]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[2]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[3]

Ting Hu. Kernel-based maximum correntropy criterion with gradient descent method. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4159-4177. doi: 10.3934/cpaa.2020186

[4]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[5]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[6]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems & Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

[7]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[8]

Saroja Kumar Singh. Moderate deviation for maximum likelihood estimators from single server queues. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 2-. doi: 10.1186/s41546-020-00044-z

[9]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[10]

Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028

[11]

Xiaming Chen. Kernel-based online gradient descent using distributed approach. Mathematical Foundations of Computing, 2019, 2 (1) : 1-9. doi: 10.3934/mfc.2019001

[12]

Feng Bao, Thomas Maier. Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems. Foundations of Data Science, 2020, 2 (1) : 1-17. doi: 10.3934/fods.2020001

[13]

Shishun Li, Zhengda Huang. Guaranteed descent conjugate gradient methods with modified secant condition. Journal of Industrial & Management Optimization, 2008, 4 (4) : 739-755. doi: 10.3934/jimo.2008.4.739

[14]

Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595

[15]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[16]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[17]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems & Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[18]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[19]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[20]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems & Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]