November  2007, 1(4): 643-660. doi: 10.3934/ipi.2007.1.643

Inverse scattering using finite elements and gap reciprocity


Department of Mathematics, University of Delaware, Newark, DE 19716, United States


Department of Applied Mathematics and Theoretical Physics, Delaware State University, Dover, DE 19901,, United States

Received  August 2007 Published  October 2007

In this paper we consider the inverse scattering problem of determining the shape of one or more objects embedded in an inhomogeneous background from Cauchy data measured on the boundary of a domain containing the objects in its interior. Following [1], we use the reciprocity gap functional method. In an inhomogeneous background medium the use of a Herglotz wave function in the reciprocity gap functional is no longer permissable. Instead we propose to use a finite element representation. We provide analysis to support the method, and also describe implementation issues. Numerical examples are given showing the performance of the method.
Citation: Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems and Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems and Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389


Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004


Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024


Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051


Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial and Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631


Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159


Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343


Eric Dubach, Robert Luce, Jean-Marie Thomas. Pseudo-Conform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra. Communications on Pure and Applied Analysis, 2009, 8 (1) : 237-254. doi: 10.3934/cpaa.2009.8.237


Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025


Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181


Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537


Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064


Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012


Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793


Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577


Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026


Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033


Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551


Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems and Imaging, 2019, 13 (3) : 597-633. doi: 10.3934/ipi.2019028


Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

2020 Impact Factor: 1.639


  • PDF downloads (102)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]