February  2007, 1(1): 77-93. doi: 10.3934/ipi.2007.1.77

Approximation errors in nonstationary inverse problems


Department of Physics, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland


Department of Physics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland

Received  September 2006 Published  January 2007

Inverse problems are known to be very intolerant to both data errors and errors in the forward model. With several inverse problems the adequately accurate forward model can turn out to be computationally excessively complex. The Bayesian framework for inverse problems has recently been shown to enable the adoption of highly approximate forward models. This approach is based on the modelling of the associated approximation errors that are incorporated in the construction of the computational model. In this paper we investigate the extension of the approximation error theory to nonstationary inverse problems. We develop the basic framework for linear nonstationary inverse problems that allows one to use both highly reduced states and extended time steps. As an example we study the one dimensional heat equation.
Citation: Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems and Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

Thi Tuyet Trang Chau, Pierre Ailliot, Valérie Monbet, Pierre Tandeo. Comparison of simulation-based algorithms for parameter estimation and state reconstruction in nonlinear state-space models. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022054


John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366


Gerasimos G. Rigatos, Efthymia G. Rigatou, Jean Daniel Djida. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1017-1035. doi: 10.3934/mbe.2015.12.1017


Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483


Mojtaba F. Fathi, Ahmadreza Baghaie, Ali Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza. Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother. Journal of Computational Dynamics, 2020, 7 (2) : 469-487. doi: 10.3934/jcd.2020019


Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017


W. Y. Tan, L.-J. Zhang, C.W. Chen. Stochastic modeling of carcinogenesis: State space models and estimation of parameters. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 297-322. doi: 10.3934/dcdsb.2004.4.297


Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417


Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4-. doi: 10.1186/s41546-020-00046-x


Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157


Marc Bocquet, Alban Farchi, Quentin Malartic. Online learning of both state and dynamics using ensemble Kalman filters. Foundations of Data Science, 2021, 3 (3) : 305-330. doi: 10.3934/fods.2020015


Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65


H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213


Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, 2022, 9 (1) : 1-26. doi: 10.3934/jcd.2021019


Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37


Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030


Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035


Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825


Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261


Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

2021 Impact Factor: 1.483


  • PDF downloads (142)
  • HTML views (0)
  • Cited by (43)

Other articles
by authors

[Back to Top]