-
Previous Article
Localized potentials in electrical impedance tomography
- IPI Home
- This Issue
-
Next Article
A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images
Enhanced imaging from multiply scattered waves
1. | Department of Mathematics and Statistics, University of Limerick, Castletroy, Limerick, Ireland |
2. | Department of Mathematics and Statistics, University of Limerick, Castletroy, Limeric, Ireland |
References:
[1] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108,
doi: 10.1063/1.526755. |
[2] |
G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity, Wave Motion, 12 (1990), 15-52.
doi: 10.1016/0165-2125(90)90017-X. |
[3] |
N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion," Springer-Verlag, New York, 2000. |
[4] |
M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312.
doi: 10.1137/S0036144500368859. |
[5] |
M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Problems, 20 (2004), 1691-1711.
doi: 10.1088/0266-5611/20/5/023. |
[6] |
J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, " Birkhauser, Boston, 1996. |
[7] |
R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves, Proc. SPIE 6513, 651304 (2007).
doi: 10.1117/12.712569. |
[8] |
A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction," London Mathematical Sciety Lecture Note Series, 196,Cambridge University Press, 1994. |
[9] |
G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems," Adam Hilger, Philadelphia, 1988. |
[10] |
P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1, McGraw-Hill, 1953. |
[11] |
C. J. Nolan, Scattering near a fold caustic, SIAM J. of Appl. Math, 61 (2000), 659-672.
doi: 10.1137/S0036139999356107. |
[12] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography, IEEE Trans. on Image Processing, 12 (2003), 1035-1043.
doi: 10.1109/TIP.2003.814243. |
[13] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-236.
doi: 10.1088/0266-5611/18/1/315. |
[14] |
C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Analysis and its Applications, 10 (2004), 133-148. |
[15] |
C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves, Inverse Problems, 22 (2006), 1817-1834,
doi: 10.1088/0266-5611/22/5/017. |
[16] |
C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation, Comm. in PDE, 22, (1997), 919-952.
doi: 10.1080/03605309708821289. |
[17] |
M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging, IEEE Trans. on Signal Processing, 39 (1991), 2044-2055.
doi: 10.1109/78.134436. |
[18] |
X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics," CRC Press, Boca Raton, FL, 1991. |
[19] |
F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II, Plenum Press, New York-London, 1980. |
[20] |
L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540-1550.
doi: 10.1109/36.718858. |
[21] |
L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, Orlando, FL, (1999). |
[22] |
C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories, submitted to IEEE-TIP, (2007). |
show all references
References:
[1] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108,
doi: 10.1063/1.526755. |
[2] |
G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity, Wave Motion, 12 (1990), 15-52.
doi: 10.1016/0165-2125(90)90017-X. |
[3] |
N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion," Springer-Verlag, New York, 2000. |
[4] |
M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312.
doi: 10.1137/S0036144500368859. |
[5] |
M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Problems, 20 (2004), 1691-1711.
doi: 10.1088/0266-5611/20/5/023. |
[6] |
J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, " Birkhauser, Boston, 1996. |
[7] |
R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves, Proc. SPIE 6513, 651304 (2007).
doi: 10.1117/12.712569. |
[8] |
A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction," London Mathematical Sciety Lecture Note Series, 196,Cambridge University Press, 1994. |
[9] |
G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems," Adam Hilger, Philadelphia, 1988. |
[10] |
P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1, McGraw-Hill, 1953. |
[11] |
C. J. Nolan, Scattering near a fold caustic, SIAM J. of Appl. Math, 61 (2000), 659-672.
doi: 10.1137/S0036139999356107. |
[12] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography, IEEE Trans. on Image Processing, 12 (2003), 1035-1043.
doi: 10.1109/TIP.2003.814243. |
[13] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-236.
doi: 10.1088/0266-5611/18/1/315. |
[14] |
C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Analysis and its Applications, 10 (2004), 133-148. |
[15] |
C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves, Inverse Problems, 22 (2006), 1817-1834,
doi: 10.1088/0266-5611/22/5/017. |
[16] |
C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation, Comm. in PDE, 22, (1997), 919-952.
doi: 10.1080/03605309708821289. |
[17] |
M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging, IEEE Trans. on Signal Processing, 39 (1991), 2044-2055.
doi: 10.1109/78.134436. |
[18] |
X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics," CRC Press, Boca Raton, FL, 1991. |
[19] |
F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II, Plenum Press, New York-London, 1980. |
[20] |
L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540-1550.
doi: 10.1109/36.718858. |
[21] |
L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, Orlando, FL, (1999). |
[22] |
C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories, submitted to IEEE-TIP, (2007). |
[1] |
Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030 |
[2] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[3] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026 |
[4] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056 |
[5] |
Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1 |
[6] |
Lorenz Kuger, Gaël Rigaud. On multiple scattering in Compton scattering tomography and its impact on fan-beam CT. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022029 |
[7] |
Joost R. Santos. Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial and Management Optimization, 2008, 4 (3) : 489-510. doi: 10.3934/jimo.2008.4.489 |
[8] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[9] |
Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048 |
[10] |
Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4111-4130. doi: 10.3934/dcdsb.2020276 |
[11] |
Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135 |
[12] |
Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial and Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083 |
[13] |
Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial and Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83 |
[14] |
Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659 |
[15] |
Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems and Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295 |
[16] |
Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial and Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89 |
[17] |
Xin-You Meng, Yu-Qian Wu, Jie Li. Bifurcation analysis of a Singular Nutrient-plankton-fish model with taxation, protected zone and multiple delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 391-423. doi: 10.3934/naco.2020010 |
[18] |
Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283 |
[19] |
Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125 |
[20] |
Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]