Advanced Search
Article Contents
Article Contents

On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization

Abstract Related Papers Cited by
  • In this paper we derive convergence and convergence rates results of the quasioptimality criterion for (iterated) Tikhonov regularization. We prove convergence and suboptimal rates under a qualitative condition on the decay of the noise with respect to the spectral family of $T$$T$*. Moreover, optimal rates are obtained if the exact solution satisfies a decay condition with respect to the spectral family of $T$*$T$.
    Mathematics Subject Classification: 47A52.


    \begin{equation} \\ \end{equation}
  • [1]

    M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Am. Math. Soc., 320 (1990), 727-735.doi: 10.2307/2001699.


    A. B. Bakushinskii, Remarks on the choice of regularization parameter from quasioptimality and relation tests, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 24 (1984), 1258-1259.


    F. Bauer and S. Kindermann, The quasi-optimality criterion for classical inverse problems, Inverse Problems, 24 (2008).


    H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996.


    M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust., 3 (1993), 253-315.


    A. S. Leonov, On the choice of regularization parameters by means of the quasi-optimality and ratio criteria, Soviet Math. Dokl., 19 (1978), 537-540.


    A. S. Leonov, On the accuracy of Tikhonov regularizing algorithms and quasioptimal selection of a regularization parameter, Soviet Math. Dokl., 44 (1992), 711-716.


    A. Neubauer, On converse and saturation results for regularization methods, in "Beiträge zur Angewandten Analysis und Informatik,'' Shaker, Aachen, (1994), 262-270.


    A. Neubauer, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM J. Numer. Anal., 34 (1997), 517-527.doi: 10.1137/S0036142993253928.


    A. N. Tikhonov and V. Arsenin, "Solutions of Ill-Posed Problems,'' Wiley, New York, 1977.


    A. N. Tikhonov, V. B. Glasko and Y. Kriksin, On the question of quasioptimal choice of a regularized approximation, Soviet Math. Dokl., 20 (1979), 1036-1040.

  • 加载中

Article Metrics

HTML views() PDF downloads(240) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint