\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization

Abstract Related Papers Cited by
  • In this paper we derive convergence and convergence rates results of the quasioptimality criterion for (iterated) Tikhonov regularization. We prove convergence and suboptimal rates under a qualitative condition on the decay of the noise with respect to the spectral family of $T$$T$*. Moreover, optimal rates are obtained if the exact solution satisfies a decay condition with respect to the spectral family of $T$*$T$.
    Mathematics Subject Classification: 47A52.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Am. Math. Soc., 320 (1990), 727-735.doi: 10.2307/2001699.

    [2]

    A. B. Bakushinskii, Remarks on the choice of regularization parameter from quasioptimality and relation tests, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 24 (1984), 1258-1259.

    [3]

    F. Bauer and S. Kindermann, The quasi-optimality criterion for classical inverse problems, Inverse Problems, 24 (2008).

    [4]

    H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996.

    [5]

    M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust., 3 (1993), 253-315.

    [6]

    A. S. Leonov, On the choice of regularization parameters by means of the quasi-optimality and ratio criteria, Soviet Math. Dokl., 19 (1978), 537-540.

    [7]

    A. S. Leonov, On the accuracy of Tikhonov regularizing algorithms and quasioptimal selection of a regularization parameter, Soviet Math. Dokl., 44 (1992), 711-716.

    [8]

    A. Neubauer, On converse and saturation results for regularization methods, in "Beiträge zur Angewandten Analysis und Informatik,'' Shaker, Aachen, (1994), 262-270.

    [9]

    A. Neubauer, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM J. Numer. Anal., 34 (1997), 517-527.doi: 10.1137/S0036142993253928.

    [10]

    A. N. Tikhonov and V. Arsenin, "Solutions of Ill-Posed Problems,'' Wiley, New York, 1977.

    [11]

    A. N. Tikhonov, V. B. Glasko and Y. Kriksin, On the question of quasioptimal choice of a regularized approximation, Soviet Math. Dokl., 20 (1979), 1036-1040.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(240) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return