- Previous Article
- IPI Home
- This Issue
-
Next Article
On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization
Local stability for soft obstacles by a single measurement
1. | RICAM, Altenbergerstrasse 69, A4040, Linz, Austria, Austria |
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York, San Francisco, London, 1975. |
[2] |
V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary, Comm. Pure Appl. Math, 50 (1997), 935-969.
doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H. |
[3] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755-806. |
[4] |
G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity, Comm. Partial Differential Equations, 26 (2001), 1787-1810.
doi: 10.1081/PDE-100107459. |
[5] |
G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685-1691. Corrigendum, preprint, 2006 (down-loadable at http://www.arxiv.org/archive/math/). arXiv:0601406 |
[6] |
G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, Siam J. Appl. Math., 58 (1998), 1060-1071.
doi: 10.1137/S0036139996306468. |
[7] |
I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-867.
doi: 10.1088/0266-5611/12/6/004. |
[8] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[9] |
J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, [Inverse Problems, 19 (2003), 1361-1384; MR2036535], Inverse Problems, 21 (2005). |
[10] |
D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[11] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Appl. Math. Sc. 93, Springer-Verlag, Berlin, 1992. |
[12] |
D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.
doi: 10.1093/imamat/31.3.253. |
[13] |
J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave, Inverse Problems, 22 (2006), 355-364.
doi: 10.1088/0266-5611/22/1/019. |
[14] |
P. R. Garabedian, "Partial Differential Equations," Second edition, Chelsea Publishing Co., New York, 1986. |
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. |
[16] |
D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators, RICAM Preprint series, (2008). |
[18] |
V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comp. Appl. Math., 42 (1991), 79-89.
doi: 10.1016/0377-0427(92)90164-S. |
[19] |
V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems, 9 (1993), 535-543.
doi: 10.1088/0266-5611/9/5/003. |
[20] |
D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Func. Anal, 130 (1995), 161-219.
doi: 10.1006/jfan.1995.1067. |
[21] |
H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[22] |
A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.
doi: 10.1088/0266-5611/20/2/010. |
[23] |
L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, to appear on Indiana Univ. Math. J., (available on line at http://www.iumj.indiana.edu/Preprints/3217.pdf). |
[24] |
A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004. |
[25] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal., 38 (2006), 434-451 (electronic).
doi: 10.1137/050631513. |
[26] |
E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements," Ph.D. thesis, S.I.S.S.A./I.S.A.S., Trieste, Italy, 2005; available on line at http://www.sissa.it/library/. |
[27] |
P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc., 132 (2004), 1351-1354.
doi: 10.1090/S0002-9939-03-07363-5. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York, San Francisco, London, 1975. |
[2] |
V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary, Comm. Pure Appl. Math, 50 (1997), 935-969.
doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H. |
[3] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755-806. |
[4] |
G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity, Comm. Partial Differential Equations, 26 (2001), 1787-1810.
doi: 10.1081/PDE-100107459. |
[5] |
G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685-1691. Corrigendum, preprint, 2006 (down-loadable at http://www.arxiv.org/archive/math/). arXiv:0601406 |
[6] |
G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, Siam J. Appl. Math., 58 (1998), 1060-1071.
doi: 10.1137/S0036139996306468. |
[7] |
I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-867.
doi: 10.1088/0266-5611/12/6/004. |
[8] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[9] |
J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, [Inverse Problems, 19 (2003), 1361-1384; MR2036535], Inverse Problems, 21 (2005). |
[10] |
D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[11] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Appl. Math. Sc. 93, Springer-Verlag, Berlin, 1992. |
[12] |
D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.
doi: 10.1093/imamat/31.3.253. |
[13] |
J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave, Inverse Problems, 22 (2006), 355-364.
doi: 10.1088/0266-5611/22/1/019. |
[14] |
P. R. Garabedian, "Partial Differential Equations," Second edition, Chelsea Publishing Co., New York, 1986. |
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. |
[16] |
D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators, RICAM Preprint series, (2008). |
[18] |
V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comp. Appl. Math., 42 (1991), 79-89.
doi: 10.1016/0377-0427(92)90164-S. |
[19] |
V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems, 9 (1993), 535-543.
doi: 10.1088/0266-5611/9/5/003. |
[20] |
D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Func. Anal, 130 (1995), 161-219.
doi: 10.1006/jfan.1995.1067. |
[21] |
H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[22] |
A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.
doi: 10.1088/0266-5611/20/2/010. |
[23] |
L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, to appear on Indiana Univ. Math. J., (available on line at http://www.iumj.indiana.edu/Preprints/3217.pdf). |
[24] |
A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004. |
[25] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal., 38 (2006), 434-451 (electronic).
doi: 10.1137/050631513. |
[26] |
E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements," Ph.D. thesis, S.I.S.S.A./I.S.A.S., Trieste, Italy, 2005; available on line at http://www.sissa.it/library/. |
[27] |
P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc., 132 (2004), 1351-1354.
doi: 10.1090/S0002-9939-03-07363-5. |
[1] |
Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems and Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691 |
[2] |
Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551 |
[3] |
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793 |
[4] |
Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035 |
[5] |
Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064 |
[6] |
Guanghui Hu, Andrea Mantile, Mourad Sini, Tao Yin. Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles. Inverse Problems and Imaging, 2020, 14 (6) : 1025-1056. doi: 10.3934/ipi.2020054 |
[7] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
[8] |
Rodica Toader. Scattering in domains with many small obstacles. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 321-338. doi: 10.3934/dcds.1998.4.321 |
[9] |
Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 |
[10] |
Ming Li, Ruming Zhang. Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Problems and Imaging, 2017, 11 (6) : 1091-1105. doi: 10.3934/ipi.2017050 |
[11] |
Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211 |
[12] |
Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951 |
[13] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[14] |
Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013 |
[15] |
John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181 |
[16] |
Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062 |
[17] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[18] |
Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009 |
[19] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[20] |
Yi-Hsuan Lin. Reconstruction of penetrable obstacles in the anisotropic acoustic scattering. Inverse Problems and Imaging, 2016, 10 (3) : 765-780. doi: 10.3934/ipi.2016020 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]