-
Previous Article
Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem
- IPI Home
- This Issue
-
Next Article
Resonances and balls in obstacle scattering with Neumann boundary conditions
Identifiability and reconstruction of shapes from integral invariants
1. | Department of Mathematics, University of Innsbruck, Technikerstr.21a, A-6020 Innsbruck, Austria, Austria |
2. | Department of Computer Science, University of Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck |
References:
[1] |
T. Fidler, M. Grasmair, H. Pottmann and O. Scherzer, Inverse problems of integral invariants and shape signatures, Preprint, 2007. |
[2] |
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158. |
[3] |
H. Krim and A. Yezzi, Jr., "Statistics and Analysis of Shapes," Birkhäuser, Boston, 2006.
doi: 10.1007/0-8176-4481-4. |
[4] |
S. Manay, D. Cremers, B. W. Hong, A. Yezzi, Jr. and S. Soatto, Integral invariants and shape matching,, In, (): 137.
|
[5] |
H. Pottmann, J. Wallner, Q.-X. Huang and Y.-L. Yang, Integral invariants for robust geometry processing, Submitted for publication, 2007. |
[6] |
W. Rudin, "Functional Analysis," McGraw-Hill Book Co., New York, 1973.McGraw-Hill Series in Higher Mathematics. |
[7] |
W. Rudin, "Real and Complex Analysis," McGraw-Hill Book Co., New York, third edition, 1987. |
[8] |
R. Schneider, Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr., 44 (1970), 55-75.
doi: 10.1002/mana.19700440105. |
[9] |
V. V. Volchkov, "Integral Geometry and Convolution Equations," Kluwer Academic Publishers, Dordrecht/Boston/London, 2003. |
[10] |
L. Yu-Kun, Z. Qian-Yi, H. Shi-Min, J. Wallner and H. Pottmann, Robust feature classification and editing, IEEE Trans. Vis. Comp. Graphics, 13 (2007), 34-45.
doi: 10.1109/TVCG.2007.19. |
show all references
References:
[1] |
T. Fidler, M. Grasmair, H. Pottmann and O. Scherzer, Inverse problems of integral invariants and shape signatures, Preprint, 2007. |
[2] |
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158. |
[3] |
H. Krim and A. Yezzi, Jr., "Statistics and Analysis of Shapes," Birkhäuser, Boston, 2006.
doi: 10.1007/0-8176-4481-4. |
[4] |
S. Manay, D. Cremers, B. W. Hong, A. Yezzi, Jr. and S. Soatto, Integral invariants and shape matching,, In, (): 137.
|
[5] |
H. Pottmann, J. Wallner, Q.-X. Huang and Y.-L. Yang, Integral invariants for robust geometry processing, Submitted for publication, 2007. |
[6] |
W. Rudin, "Functional Analysis," McGraw-Hill Book Co., New York, 1973.McGraw-Hill Series in Higher Mathematics. |
[7] |
W. Rudin, "Real and Complex Analysis," McGraw-Hill Book Co., New York, third edition, 1987. |
[8] |
R. Schneider, Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr., 44 (1970), 55-75.
doi: 10.1002/mana.19700440105. |
[9] |
V. V. Volchkov, "Integral Geometry and Convolution Equations," Kluwer Academic Publishers, Dordrecht/Boston/London, 2003. |
[10] |
L. Yu-Kun, Z. Qian-Yi, H. Shi-Min, J. Wallner and H. Pottmann, Robust feature classification and editing, IEEE Trans. Vis. Comp. Graphics, 13 (2007), 34-45.
doi: 10.1109/TVCG.2007.19. |
[1] |
Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008 |
[2] |
Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems and Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018 |
[3] |
David Maxwell. Kozlov-Maz'ya iteration as a form of Landweber iteration. Inverse Problems and Imaging, 2014, 8 (2) : 537-560. doi: 10.3934/ipi.2014.8.537 |
[4] |
Barbara Kaltenbacher, Ivan Tomba. Enhanced choice of the parameters in an iteratively regularized Newton-Landweber iteration in Banach space. Conference Publications, 2015, 2015 (special) : 686-695. doi: 10.3934/proc.2015.0686 |
[5] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[6] |
Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297 |
[7] |
André de Carvalho, Toby Hall. Decoration invariants for horseshoe braids. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 863-906. doi: 10.3934/dcds.2010.27.863 |
[8] |
Tomoo Yokoyama. Refinements of topological invariants of flows. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2295-2331. doi: 10.3934/dcds.2021191 |
[9] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[10] |
Bin Fan, Mejdi Azaïez, Chuanju Xu. An extension of the landweber regularization for a backward time fractional wave problem. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2893-2916. doi: 10.3934/dcdss.2020409 |
[11] |
Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51 |
[12] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[13] |
BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85 |
[14] |
Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185 |
[15] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[16] |
Joep H.M. Evers, Sander C. Hille, Adrian Muntean. Modelling with measures: Approximation of a mass-emitting object by a point source. Mathematical Biosciences & Engineering, 2015, 12 (2) : 357-373. doi: 10.3934/mbe.2015.12.357 |
[17] |
Roman Chapko. On a Hybrid method for shape reconstruction of a buried object in an elastostatic half plane. Inverse Problems and Imaging, 2009, 3 (2) : 199-210. doi: 10.3934/ipi.2009.3.199 |
[18] |
Mark Comerford, Todd Woodard. Orbit portraits in non-autonomous iteration. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2253-2277. doi: 10.3934/dcdss.2019144 |
[19] |
George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215 |
[20] |
Walter D. Neumann and Jun Yang. Invariants from triangulations of hyperbolic 3-manifolds. Electronic Research Announcements, 1995, 1: 72-79. |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]