-
Previous Article
On the regularization of the inverse conductivity problem with discontinuous conductivities
- IPI Home
- This Issue
-
Next Article
Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem
Why linear sampling really seems to work
1. | Institute of Mathematics, Johannes Gutenberg-Universität, 55099 Mainz, Germany |
References:
[1] |
T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), 163-173.
doi: 10.1088/0266-5611/20/1/010. |
[2] |
T. Arens and A. Lechleiter, "The Linear Sampling Method Revisited," manuscript, 2007. |
[3] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[4] |
A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity, Inverse Problems, 18 (2002), 547-558.
doi: 10.1088/0266-5611/18/3/303. |
[5] |
D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[6] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd Ed., Applied Mathematical Sciences, 93, Springer, Berlin, 1998. |
[7] |
D. Colton and P. Monk, A linear sampling method for the detection of leukemia using microwaves II, SIAM J. Appl. Math., 60 (1999), 241-255.
doi: 10.1137/S003613999834426X. |
[8] |
D. Colton, M. Piani and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[9] |
H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996. |
[10] |
B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering, Inverse Problems, 21 (2005), 2035-2050.
doi: 10.1088/0266-5611/21/6/015. |
[11] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," 7th Ed., Academic Press, New York, 2007. |
[12] |
C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind," Research Notes in Mathematics, 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[13] |
H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18 (2002), 891-906.
doi: 10.1088/0266-5611/18/3/323. |
[14] |
A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.
doi: 10.1088/0266-5611/14/6/009. |
[15] |
A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems," Oxford University Press, Oxford, 2008. |
[16] |
P. Monk, "Finite Element Methods for Maxwell's Equations," Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003. |
[17] |
V. A. Morozov, On the solution of functional equations by the method of regularization, Dokl. Akad. Nauk SSSR, 167, 510-512 (Russian), translated as Soviet Math. Dokl., 7 (1966), 414-417. |
[18] |
V. A. Morozov, "Methods for Solving Incorrectly Posed Problems," Translated from the Russian by A. B. Aries. Translation edited by Z. Nashed. Springer-Verlag, New York, 1984. |
[19] |
S. Nintcheu Fata and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, 20 (2004), 713-736.
doi: 10.1088/0266-5611/20/3/005. |
[20] |
A. Tacchino, J. Coyle and M. Piana, Numerical validation of the linear sampling method, Inverse Problems, 18 (2002), 511-527.
doi: 10.1088/0266-5611/18/3/301. |
[21] |
G. M. Vainikko, The discrepancy principle for a class of regularization methods, USSR Comp. Math. Math. Phys., 22 (1982), 1-19.
doi: 10.1016/0041-5553(82)90120-3. |
[22] |
G. M. Vainikko, The critical level of discrepancy in regularization methods, USSR Comp. Math. Math. Phys., 23 (1983), 1-19.
doi: 10.1016/S0041-5553(83)80068-8. |
show all references
References:
[1] |
T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), 163-173.
doi: 10.1088/0266-5611/20/1/010. |
[2] |
T. Arens and A. Lechleiter, "The Linear Sampling Method Revisited," manuscript, 2007. |
[3] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[4] |
A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity, Inverse Problems, 18 (2002), 547-558.
doi: 10.1088/0266-5611/18/3/303. |
[5] |
D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[6] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd Ed., Applied Mathematical Sciences, 93, Springer, Berlin, 1998. |
[7] |
D. Colton and P. Monk, A linear sampling method for the detection of leukemia using microwaves II, SIAM J. Appl. Math., 60 (1999), 241-255.
doi: 10.1137/S003613999834426X. |
[8] |
D. Colton, M. Piani and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[9] |
H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996. |
[10] |
B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering, Inverse Problems, 21 (2005), 2035-2050.
doi: 10.1088/0266-5611/21/6/015. |
[11] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," 7th Ed., Academic Press, New York, 2007. |
[12] |
C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind," Research Notes in Mathematics, 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[13] |
H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18 (2002), 891-906.
doi: 10.1088/0266-5611/18/3/323. |
[14] |
A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.
doi: 10.1088/0266-5611/14/6/009. |
[15] |
A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems," Oxford University Press, Oxford, 2008. |
[16] |
P. Monk, "Finite Element Methods for Maxwell's Equations," Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003. |
[17] |
V. A. Morozov, On the solution of functional equations by the method of regularization, Dokl. Akad. Nauk SSSR, 167, 510-512 (Russian), translated as Soviet Math. Dokl., 7 (1966), 414-417. |
[18] |
V. A. Morozov, "Methods for Solving Incorrectly Posed Problems," Translated from the Russian by A. B. Aries. Translation edited by Z. Nashed. Springer-Verlag, New York, 1984. |
[19] |
S. Nintcheu Fata and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, 20 (2004), 713-736.
doi: 10.1088/0266-5611/20/3/005. |
[20] |
A. Tacchino, J. Coyle and M. Piana, Numerical validation of the linear sampling method, Inverse Problems, 18 (2002), 511-527.
doi: 10.1088/0266-5611/18/3/301. |
[21] |
G. M. Vainikko, The discrepancy principle for a class of regularization methods, USSR Comp. Math. Math. Phys., 22 (1982), 1-19.
doi: 10.1016/0041-5553(82)90120-3. |
[22] |
G. M. Vainikko, The critical level of discrepancy in regularization methods, USSR Comp. Math. Math. Phys., 23 (1983), 1-19.
doi: 10.1016/S0041-5553(83)80068-8. |
[1] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[2] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[3] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[4] |
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 |
[5] |
Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036 |
[6] |
Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022050 |
[9] |
Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009 |
[10] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[11] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[12] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
[13] |
Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123 |
[14] |
Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062 |
[15] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[16] |
Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025 |
[17] |
Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103 |
[18] |
Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012 |
[19] |
Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems and Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123 |
[20] |
Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]