# American Institute of Mathematical Sciences

November  2008, 2(4): 455-484. doi: 10.3934/ipi.2008.2.455

## Fast dual minimization of the vectorial total variation norm and applications to color image processing

 1 Department of Mathematics, University of California, Los Angeles, CA 90095-1555, United States, United States

Received  July 2008 Revised  October 2008 Published  November 2008

We propose a regularization algorithm for color/vectorial images which is fast, easy to code and mathematically well-posed. More precisely, the regularization model is based on the dual formulation of the vectorial Total Variation (VTV) norm and it may be regarded as the vectorial extension of the dual approach defined by Chambolle in [13] for gray-scale/scalar images. The proposed model offers several advantages. First, it minimizes the exact VTV norm whereas standard approaches use a regularized norm. Then, the numerical scheme of minimization is straightforward to implement and finally, the number of iterations to reach the solution is low, which gives a fast regularization algorithm. Finally, and maybe more importantly, the proposed VTV minimization scheme can be easily extended to many standard applications. We apply this $L^1$ vectorial regularization algorithm to the following problems: color inverse scale space, color denoising with the chromaticity-brightness color representation, color image inpainting, color wavelet shrinkage, color image decomposition, color image deblurring, and color denoising on manifolds. Generally speaking, this VTV minimization scheme can be used in problems that required vector field (color, other feature vector) regularization while preserving discontinuities.
Citation: Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455
 [1] Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055 [2] Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53 [3] Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499 [4] Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321 [5] Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems and Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777 [6] G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123 [7] Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409 [8] Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, 2022, 16 (4) : 895-924. doi: 10.3934/ipi.2022004 [9] Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems and Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685 [10] Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems and Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030 [11] Sören Bartels, Nico Weber. Parameter learning and fractional differential operators: Applications in regularized image denoising and decomposition problems. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021048 [12] Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems and Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058 [13] Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 [14] Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 [15] Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 [16] Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025 [17] Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018 [18] Juan Carlos De los Reyes, Carola-Bibiane Schönlieb. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization. Inverse Problems and Imaging, 2013, 7 (4) : 1183-1214. doi: 10.3934/ipi.2013.7.1183 [19] Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems and Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557 [20] Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1187-1197. doi: 10.3934/jimo.2016.12.1187

2021 Impact Factor: 1.483