
Previous Article
Stationary waves method for inverse scattering problems
 IPI Home
 This Issue

Next Article
Dynamical tomography of gravitationally bound systems
Unique recovery of unknown projection orientations in threedimensional tomography
1.  Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsinki, 
[1] 
Jaakko Ketola, Lars Lamberg. An algorithm for recovering unknown projection orientations and shifts in 3D tomography. Inverse Problems & Imaging, 2011, 5 (1) : 7593. doi: 10.3934/ipi.2011.5.75 
[2] 
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 12431280. doi: 10.3934/krm.2020045 
[3] 
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 4362. doi: 10.3934/jmd.2008.2.43 
[4] 
Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451466. doi: 10.3934/jimo.2006.2.451 
[5] 
Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the BirkoffKellogg theorem. Conference Publications, 2007, 2007 (Special) : 260268. doi: 10.3934/proc.2007.2007.260 
[6] 
Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 52475287. doi: 10.3934/dcds.2020227 
[7] 
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173197. doi: 10.3934/ipi.2014.8.173 
[8] 
Lars Lamberg, Lauri Ylinen. TwoDimensional tomography with unknown view angles. Inverse Problems & Imaging, 2007, 1 (4) : 623642. doi: 10.3934/ipi.2007.1.623 
[9] 
Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811829. doi: 10.3934/ipi.2014.8.811 
[10] 
Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 155171. doi: 10.3934/dcds.2015.35.155 
[11] 
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353387. doi: 10.3934/krm.2021008 
[12] 
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 15451558. doi: 10.3934/dcds.2019067 
[13] 
Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 35553565. doi: 10.3934/dcds.2013.33.3555 
[14] 
Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211217. doi: 10.3934/jimo.2005.1.211 
[15] 
Yazheng Dang, Jie Sun, Su Zhang. Double projection algorithms for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2019, 15 (4) : 20232034. doi: 10.3934/jimo.2018135 
[16] 
Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673690. doi: 10.3934/ipi.2007.1.673 
[17] 
Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial & Management Optimization, 2020, 16 (5) : 23312349. doi: 10.3934/jimo.2019056 
[18] 
Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems  S, 2010, 3 (4) : 517532. doi: 10.3934/dcdss.2010.3.517 
[19] 
Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the halfspace. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511525. doi: 10.3934/cpaa.2014.13.511 
[20] 
Boris Kramer, John R. Singler. A POD projection method for largescale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413435. doi: 10.3934/naco.2016018 
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]