May  2009, 3(2): 243-257. doi: 10.3934/ipi.2009.3.243

Vector ellipsoidal harmonics and neuronal current decomposition in the brain


Department of Chemical Engineering, University of Patras, Greece, Greece

Received  November 2008 Revised  March 2009 Published  May 2009

Vector ellipsoidal harmonics are introduced here for the first time and their analytic peculiarities, as well as their limitations, are analyzed. A novelty of these vectorial base functions is that we need to introduce two different inner products in order to obtain orthogonality on the surface of any ellipsoid. Furthermore, in contrast to the vector spherical harmonics which are independent of the radial variable, the vector ellipsoidal harmonics can not be defined uniformly over a family of confocal ellipsoids. An expansion theorem is proved which secures completeness of the vectorial harmonics as well as a non-trivial algorithm that determines the coefficients of the expansion. Then, these new functions are used to prove that, for the realistic ellipsoidal model of the human head, there exists a component of the neuronal current that is invisible by the electroencephalographic measurements while it is detectable through magnetoencephalographic measurements in the exterior of the head. Furthermore, in contrast to the case of the sphere, where no part of the current contributes both to the electric potential and to the magnetic field, we prove here that, in the case of the ellipsoid, there is a part of the current that influences the electroencephalographic as well as the magnetoencephalographic recordings.
Citation: George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic and Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063


Shruti Agarwal, Gilles Carbou, Stéphane Labbé, Christophe Prieur. Control of a network of magnetic ellipsoidal samples. Mathematical Control and Related Fields, 2011, 1 (2) : 129-147. doi: 10.3934/mcrf.2011.1.129


Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041


Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009


Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643


Amadeu Delshams, Rodrigo G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6047-6072. doi: 10.3934/dcds.2018261


Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems and Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169


Jakub Cupera. Diffusion approximation of neuronal models revisited. Mathematical Biosciences & Engineering, 2014, 11 (1) : 11-25. doi: 10.3934/mbe.2014.11.11


Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188


Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601


Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4025-4041. doi: 10.3934/cpaa.2021142


Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022004


Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041


Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410


Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009


Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035


Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549


Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179


Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837


Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems and Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016

2021 Impact Factor: 1.483


  • PDF downloads (134)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]