-
Previous Article
A support theorem for the geodesic ray transform of symmetric tensor fields
- IPI Home
- This Issue
-
Next Article
Reciprocity gap music imaging for an inverse scattering problem in two-layered media
Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations
1. | Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden |
In the process of defining the wave-field decomposition (wave-splitting), the resolvent set of the time-Laplace representation of the system's matrix is analyzed. This set is shown to contain a strip around the imaginary axis. We construct a splitting matrix as a Dunford-Taylor type integral over the resolvent of the unbounded operator defined by the electromagnetic system's matrix. The splitting matrix commutes with the system's matrix and the decomposition is obtained via a generalized eigenvalue-eigenvector procedure. The decomposition is expressed in terms of components of the splitting matrix. The constructive solution to the question of the existence of a decomposition also generates an impedance mapping solution to an algebraic Riccati operator equation. This solution is the electromagnetic generalization in an anisotropic media of a Dirichlet-to-Neumann map.
[1] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[2] |
Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029 |
[3] |
Gengen Zhang. Time splitting combined with exponential wave integrator Fourier pseudospectral method for quantum Zakharov system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2587-2606. doi: 10.3934/dcdsb.2021149 |
[4] |
Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491 |
[5] |
Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062 |
[6] |
Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893 |
[7] |
Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687 |
[8] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[9] |
Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159 |
[10] |
Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286 |
[11] |
Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122 |
[12] |
Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719 |
[13] |
Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150 |
[14] |
Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459 |
[15] |
Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155 |
[16] |
Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77 |
[17] |
Yonghui Zhou, Shuguan Ji. Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2022, 21 (2) : 555-566. doi: 10.3934/cpaa.2021188 |
[18] |
Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925 |
[19] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[20] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]