We study inverse scattering for $\Delta_g+V$ on $(X,g)$ a conformally compact manifold with metric $g,$ with variable sectional curvature -α2(y) at the boundary and
$V\in C^\infty(X)$ not vanishing at the boundary. We prove that the scattering matrices at two fixed energies $\lambda_1,$ $\lambda_2$ in a suitable subset of c
,
determines α, and the Taylor series of both the potential and the metric at the boundary.