Advanced Search
Article Contents
Article Contents

Discretization-invariant Bayesian inversion and Besov space priors

Abstract Related Papers Cited by
  • Bayesian solution of an inverse problem for indirect measurement $M = AU + $ε is considered, where $U$ is a function on a domain of $\R^d$. Here $A$ is a smoothing linear operator and ε is Gaussian white noise. The data is a realization $m_k$ of the random variable $M_k = P_kA U+P_k$ε , where $P_k$ is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is discretized as $U_n=T_nU$, where $T_n$ is a finite dimensional projection, leading to the computational measurement model $M_{kn}=P_k A U_n + P_k$ε . Bayes formula gives then the posterior distribution

    $\pi_{kn}(u_n\|\m_{kn})$~ Π n $(u_n)\exp(-\frac{1}{2}$||$\m_{kn} - P_kA u_n$||$\_2^2)$

    in $\R^d$, and the mean $\u_{kn}$:$=\int u_n \ \pi_{kn}(u_n\|\m_k)\ du_n$ is considered as the reconstruction of $U$. We discuss a systematic way of choosing prior distributions Π n for all $n\geq n_0>0$ by achieving them as projections of a distribution in a infinite-dimensional limit case. Such choice of prior distributions is discretization-invariant in the sense that Π n represent the same a priori information for all $n$ and that the mean $\u_{kn}$ converges to a limit estimate as $k,n$→$\infty$. Gaussian smoothness priors and wavelet-based Besov space priors are shown to be discretization invariant. In particular, Bayesian inversion in dimension two with $B^1_11$ prior is related to penalizing the $\l^1$ norm of the wavelet coefficients of $U$.

    Mathematics Subject Classification: 60F17, 65C20, 42C40.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint