February  2010, 4(1): 11-17. doi: 10.3934/ipi.2010.4.11

A theoretical framework for the regularization of Poisson likelihood estimation problems


Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812, United States

Received  October 2008 Revised  October 2009 Published  February 2010

Let $z=Au+\gamma$ be an ill-posed, linear operator equation. Such a model arises, for example, in both astronomical and medical imaging, in which case $\gamma$ corresponds to background, $u$ the unknown true image, $A$ the forward operator, and $z$ the data. Regularized solutions of this equation can be obtained by solving

$R_\alpha(A,z)= arg\min_{u\geq 0} \{T_0(Au;z)+\alpha J(u)\},$

where $T_0(Au;z)$ is the negative-log of the Poisson likelihood functional, and $\alpha>0$ and $J$ are the regularization parameter and functional, respectively. Our goal in this paper is to determine general conditions which guarantee that $R_\alpha$ defines a regularization scheme for $z=Au+\gamma$. Determining the appropriate definition for regularization scheme in this context is important: not only will it serve to unify previous theoretical arguments in this direction, it will provide a framework for future theoretical analyses. To illustrate the latter, we end the paper with an application of the general framework to a case in which an analysis has not been done.

Citation: Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems & Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1


Dang Van Hieu, Le Dung Muu, Pham Kim Quy. New iterative regularization methods for solving split variational inclusion problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021185


Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167


Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139


Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267


Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018


Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215


T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems & Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577


Durga Prasad Challa, Anupam Pal Choudhury, Mourad Sini. Mathematical imaging using electric or magnetic nanoparticles as contrast agents. Inverse Problems & Imaging, 2018, 12 (3) : 573-605. doi: 10.3934/ipi.2018025


Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems & Imaging, 2022, 16 (1) : 68-88. doi: 10.3934/ipi.2021041


Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685


Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511


Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems & Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021


Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347


Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343


Avner Friedman. PDE problems arising in mathematical biology. Networks & Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691


Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems & Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036


Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007


Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, 2021, 15 (3) : 555-597. doi: 10.3934/ipi.2021005


You-Wei Wen, Raymond Honfu Chan. Using generalized cross validation to select regularization parameter for total variation regularization problems. Inverse Problems & Imaging, 2018, 12 (5) : 1103-1120. doi: 10.3934/ipi.2018046

2020 Impact Factor: 1.639


  • PDF downloads (57)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]