• Previous Article
    Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms
  • IPI Home
  • This Issue
  • Next Article
    Identification of sound-soft 3D obstacles from phaseless data
February  2010, 4(1): 151-167. doi: 10.3934/ipi.2010.4.151

Gauge equivalence in stationary radiative transport through media with varying index of refraction

1. 

Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063, United States

2. 

Department of Mathematics, Purdue University, 150 N University Street, West Lafayette, IN 47907

3. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States

Received  April 2009 Revised  December 2009 Published  February 2010

Three dimensional anisotropic attenuating and scattering media sharing the same albedo operator have been shown to be related via a gauge transformation. Such transformations define an equivalence relation. We show that the gauge equivalence is also valid in media with non-constant index of refraction, modeled by a Riemannian metric. The two dimensional model is also investigated.
Citation: Stephen McDowall, Plamen Stefanov, Alexandru Tamasan. Gauge equivalence in stationary radiative transport through media with varying index of refraction. Inverse Problems & Imaging, 2010, 4 (1) : 151-167. doi: 10.3934/ipi.2010.4.151
[1]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[2]

Guillaume Bal, Ian Langmore, François Monard. Inverse transport with isotropic sources and angularly averaged measurements. Inverse Problems & Imaging, 2008, 2 (1) : 23-42. doi: 10.3934/ipi.2008.2.23

[3]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[4]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[5]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[6]

Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533

[7]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[8]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[9]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

[10]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[11]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[12]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[13]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091

[14]

Jianjun Yuan. Global solutions of two coupled Maxwell systems in the temporal gauge. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1709-1719. doi: 10.3934/dcds.2016.36.1709

[15]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. Linear weakly Noetherian constants of motion are horizontal gauge momenta. Journal of Geometric Mechanics, 2012, 4 (2) : 129-136. doi: 10.3934/jgm.2012.4.129

[16]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[17]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[18]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[19]

Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047

[20]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (3)

[Back to Top]