February  2010, 4(1): 19-38. doi: 10.3934/ipi.2010.4.19

Identification of generalized impedance boundary conditions in inverse scattering problems

1. 

Laboratoire POEMS, ENSTA, 32, Boulevard Victor, 75739 Paris Cedex 15, France

2. 

INRIA Saclay Ile de France / CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex

Received  March 2009 Revised  November 2009 Published  February 2010

In the context of scattering problems in the harmonic regime, we consider the problem of identification of some Generalized Impedance Boundary Conditions (GIBC) at the boundary of an object (which is supposed to be known) from far field measurements associated with a single incident plane wave at a fixed frequency. The GIBCs can be seen as approximate models for thin coatings, corrugated surfaces or highly absorbing media. After pointing out that uniqueness does not hold in the general case, we propose some additional assumptions for which uniqueness can be restored. We also consider the question of stability when uniqueness holds. We prove in particular Lipschitz stability when the impedance parameters belong to a compact subset of a finite dimensional space.
Citation: Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19
[1]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[2]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[3]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[4]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[5]

Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems and Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151

[6]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[7]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[8]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control and Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[9]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[10]

Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023

[11]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[12]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems and Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[13]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems and Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[14]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[15]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[16]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[17]

Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems and Imaging, 2019, 13 (3) : 597-633. doi: 10.3934/ipi.2019028

[18]

Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991

[19]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems and Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[20]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]