May  2010, 4(2): 257-271. doi: 10.3934/ipi.2010.4.257

Three-dimensional dental X-ray imaging by combination of panoramic and projection data


Aalto University, Institute of Mathematics, P.O.Box 1100, FI-00076 Aalto, Finland


PaloDex Group, P.O.Box 20, FI-04301 Tuusula, Finland, Finland


University of Helsinki, Department of Mathematics and Statistics, FI-00014 Helsinki, Finland


Department of Mathematics and Statistics, University of Helsinki

Received  February 2009 Revised  December 2009 Published  May 2010

A novel three-dimensional dental X-ray imaging method is introduced, based on hybrid data collected with a dental panoramic device. Such a device uses geometric movement of the X-ray source and detector around the head of a patient to produce a panoramic image, where all teeth are in sharp focus and details at a distance from the dental arc are blurred. A digital panoramic device is reprogrammed to collect two-dimensional projection radiographs. Two complementary types of data are measured from a region of interest: projection data with a limited angle of view, and a panoramic image. Tikhonov regularization is applied to these data in order to produce three-dimensional reconstructions. The algorithm is tested with simulated data and real-world in vitro measurements from a dry mandible. Reconstructions from limited-angle projection data alone do provide the dentist with three-dimensional information useful for dental implant planning. Furthermore, adding panoramic data to the process improves the reconstruction precision in the direction of the dental arc. The presented imaging modality can be seen as a cost-effective alternative to a full-angle CT scanner.
Citation: Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems and Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems and Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69


Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems and Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043


Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089


Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems and Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147


Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563


Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471


Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems and Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042


François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713


Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389


Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160


Kim Knudsen, Aksel Kaastrup Rasmussen. Direct regularized reconstruction for the three-dimensional Calderón problem. Inverse Problems and Imaging, 2022, 16 (4) : 871-894. doi: 10.3934/ipi.2022002


Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047


Xiaojuan Deng, Xing Zhao, Mengfei Li, Hongwei Li. Limited-angle CT reconstruction with generalized shrinkage operators as regularizers. Inverse Problems and Imaging, 2021, 15 (6) : 1287-1306. doi: 10.3934/ipi.2021019


Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024


Qun Liu, Lihua Fu, Meng Zhang, Wanjuan Zhang. Two-dimensional seismic data reconstruction using patch tensor completion. Inverse Problems and Imaging, 2020, 14 (6) : 985-1000. doi: 10.3934/ipi.2020052


Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020


Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems and Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015


Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems and Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431


Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073


Adam Larios, E. S. Titi. On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 603-627. doi: 10.3934/dcdsb.2010.14.603

2021 Impact Factor: 1.483


  • PDF downloads (75)
  • HTML views (0)
  • Cited by (8)

[Back to Top]