August  2010, 4(3): 523-545. doi: 10.3934/ipi.2010.4.523

A two-level domain decomposition method for image restoration

1. 

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore

Received  August 2009 Revised  November 2009 Published  July 2010

Image restoration has drawn much attention in recent years and a surge of research has been done on variational models and their numerical studies. However, there remains an urgent need to develop fast and robust methods for solving the minimization problems and the underlying nonlinear PDEs to process images of moderate to large size. This paper aims to propose a two-level domain decomposition method, which consists of an overlapping domain decomposition technique and a coarse mesh correction, for directly solving the total variational minimization problems. The iterative algorithm leads to a system of small size and better conditioning in each subspace, and is accelerated with a piecewise linear coarse mesh correction. Various numerical experiments and comparisons demonstrate that the proposed method is fast and robust particularly for images of large size.
Citation: Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems and Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523
[1]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[2]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[3]

Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455

[4]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems and Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[5]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[6]

Wei Wang, Ling Pi, Michael K. Ng. Saturation-Value Total Variation model for chromatic aberration correction. Inverse Problems and Imaging, 2020, 14 (4) : 733-755. doi: 10.3934/ipi.2020034

[7]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems and Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[8]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[9]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[10]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[11]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems and Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[12]

Sudeb Majee, Subit K. Jain, Rajendra K. Ray, Ananta K. Majee. A fuzzy edge detector driven telegraph total variation model for image despeckling. Inverse Problems and Imaging, 2022, 16 (2) : 367-396. doi: 10.3934/ipi.2021054

[13]

Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055

[14]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems and Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[15]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[16]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[19]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

[20]

Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems and Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]