August  2010, 4(3): 547-569. doi: 10.3934/ipi.2010.4.547

Reconstructing electromagnetic obstacles by the enclosure method

1. 

Department of Mathematics, University of Washington, Seattle, WA 98105, United States

Received  December 2009 Revised  February 2010 Published  July 2010

We show that one can determine Perfectly Magnetic Conductor obstacles, Perfectly Electric Conductor obstacles and obstacles satisfying impedance boundary condition, embedded in a known electromagnetic medium, by making electromagnetic measurements at the boundary of the medium. The boundary measurements are encoded in the impedance map that sends the tangential component of the electric field to the tangential component of the magnetic field. We do this by probing the medium with complex geometrical optics solutions to the corresponding Maxwell's equations and extend the enclosure method to this case.
Citation: Ting Zhou. Reconstructing electromagnetic obstacles by the enclosure method. Inverse Problems and Imaging, 2010, 4 (3) : 547-569. doi: 10.3934/ipi.2010.4.547
[1]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems and Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[2]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[3]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[4]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[5]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[6]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[7]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[8]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[9]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[10]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[11]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[12]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[13]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[14]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[15]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[16]

Suqi Ma, Zhaosheng Feng, Qishao Lu. A two-parameter geometrical criteria for delay differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 397-413. doi: 10.3934/dcdsb.2008.9.397

[17]

Gabriella Tarantello. Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 931-973. doi: 10.3934/dcds.2010.28.931

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[20]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]