Advanced Search
Article Contents
Article Contents

Mathematical reminiscences

Abstract Related Papers Cited by
  • N/A


    \begin{equation} \\ \end{equation}
  • [1]

    J. Boman, On the propagation of analyticity of solutions of differential equations with constant coefficients, Ark. Mat., 5 (1964), 271-279.doi: doi:10.1007/BF02591127.


    J. Boman, On the intersection of classes of infinitely differentiable functions, Ark. Mat., 5 (1964), 301-309.doi: doi:10.1007/BF02591130.


    J. Boman, Partial regularity of mappings between Euclidean spaces, Acta Math., 119 (1967), 1-25.doi: doi:10.1007/BF02392077.


    J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268.


    J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Bull. Amer. Math. Soc., 75 (1969), 1266-1268.doi: doi:10.1090/S0002-9904-1969-12387-6.


    J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Ark. Mat., 9 (1971), 91-116.doi: doi:10.1007/BF02383639.


    J. Boman, Saturation problems and distribution theory, Appendix I in "Topics in Approximation Theory," by H. S. Shapiro, Lecture Notes in Mathematics, no. 187 (1971), pp. 249-266.


    J. Boman, Equivalence of generalized moduli of continuity, Ark. Mat., 18 (1980), 73-100.doi: doi:10.1007/BF02384682.


    J. Boman, On the closure of spaces of sums of ridge functions and the range of the X-ray transform, Ann. Inst. Fourier (Grenoble), 34 (1984), 207-239.


    J. Boman, An example of non-uniqueness for a generalized Radon transform, J. d'Anal. Math., 61 (1993), 395-401.doi: doi:10.1007/BF02788850.


    J. Boman, (joint work with E. T. Quinto) Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.doi: doi:10.1215/S0012-7094-87-05547-5.


    J. Boman, The sum of two plane convex $C^{\infty}$ sets is not always $C^5$, Math. Scand., 66 (1990), 216-224.


    J. Boman, Smoothness of sums of convex sets with real analytic boundaries, Math. Scand., 66 (1990), 225-230.


    J. Boman, (joint work with E. T. Quinto), Support theorems for real-analytic Radon transforms on line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877-890.doi: doi:10.2307/2154410.


    J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization, Lecture Notes in Mathematics no. 1497 (1989), 1-5.


    J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 Série I (1992), 1231-1234.


    J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemp. Math., 140 (1992), 23-30.


    J. Boman, Microlocal quasianalyticity for distributions and ultradistributions, Publ. RIMS (Kyoto), 31 (1995), 1079-1095.doi: (MR1382568) doi:10.2977/prims/1195163598.


    J. Boman, (joint work with Svante Linusson), Examples of non-uniqueness for the combinatorial Radon transform modulo the symmetric group, Math. Scand., 78 (1996), 207-212.


    J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of hyperfunctions, Contemp. Math., 251 (2000), 61-82.


    J. Boman, (joint work with Lars Hörmander), A Payley-Wiener theorem for the analytic wave front set, Asian J. Math., 3 (1999), 757-769.


    J. Boman, (joint work with Jan-Olov Strömberg), Novikov's inversion formula for the attenuated Radon transform-A new approach, J. Geom. Anal., 14 (2004), 185-198.


    J. Boman, (joint work with Filip Lindskog), Support theorems for the Radon transform and Cramér-Wold theorems, J. Theor. Probab., 22 (2008), 683-710.doi: doi:10.1007/s10959-008-0151-0.


    J. Boman, The mathematics of tomography. On a mathematical theory with many new applications (Swedish), Normat, 56 (2008), 177-186.


    J. BomanUnique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in this issue.


    J. Boman, (joint work with Dieudonné Agbor)On the modulus of continuity of mappings between Euclidean spaces, to appear in Math. Scand.


    J. BomanA local uniqueness theorem for a weighted Radon transform, Inverse Probl. Imaging, in this issue.


    J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes, C. R. Acad. Sci. Paris, Série I, 347 (2009), 1351-1354.


    L. Hörmander, "The Analysis of Linear Partial Differential Operators,'' Vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.


    R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.doi: doi:10.1007/BF02384507.


    S. GindikinA Remark on the weighted Radon transform on the plane, J. Inverse Probl. Imaging, in this issue.


    H. S. Shapiro, A Tauberian theorem related to approximation theory, Acta Math., 120 (1968), 279-292.doi: doi:10.1007/BF02394612.

  • 加载中

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint