-
Previous Article
Inverse problems for quantum trees II: Recovering matching conditions for star graphs
- IPI Home
- This Issue
-
Next Article
Foreword
Mathematical reminiscences
1. | Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden |
References:
[1] |
J. Boman, On the propagation of analyticity of solutions of differential equations with constant coefficients, Ark. Mat., 5 (1964), 271-279.
doi: doi:10.1007/BF02591127. |
[2] |
J. Boman, On the intersection of classes of infinitely differentiable functions, Ark. Mat., 5 (1964), 301-309.
doi: doi:10.1007/BF02591130. |
[3] |
J. Boman, Partial regularity of mappings between Euclidean spaces, Acta Math., 119 (1967), 1-25.
doi: doi:10.1007/BF02392077. |
[4] |
J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268. |
[5] |
J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Bull. Amer. Math. Soc., 75 (1969), 1266-1268.
doi: doi:10.1090/S0002-9904-1969-12387-6. |
[6] |
J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Ark. Mat., 9 (1971), 91-116.
doi: doi:10.1007/BF02383639. |
[7] |
J. Boman, Saturation problems and distribution theory, Appendix I in "Topics in Approximation Theory," by H. S. Shapiro, Lecture Notes in Mathematics, no. 187 (1971), pp. 249-266. |
[8] |
J. Boman, Equivalence of generalized moduli of continuity, Ark. Mat., 18 (1980), 73-100.
doi: doi:10.1007/BF02384682. |
[9] |
J. Boman, On the closure of spaces of sums of ridge functions and the range of the X-ray transform, Ann. Inst. Fourier (Grenoble), 34 (1984), 207-239. |
[10] |
J. Boman, An example of non-uniqueness for a generalized Radon transform, J. d'Anal. Math., 61 (1993), 395-401.
doi: doi:10.1007/BF02788850. |
[11] |
J. Boman, (joint work with E. T. Quinto) Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.
doi: doi:10.1215/S0012-7094-87-05547-5. |
[12] |
J. Boman, The sum of two plane convex $C^{\infty}$ sets is not always $C^5$, Math. Scand., 66 (1990), 216-224. |
[13] |
J. Boman, Smoothness of sums of convex sets with real analytic boundaries, Math. Scand., 66 (1990), 225-230. |
[14] |
J. Boman, (joint work with E. T. Quinto), Support theorems for real-analytic Radon transforms on line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877-890.
doi: doi:10.2307/2154410. |
[15] |
J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization, Lecture Notes in Mathematics no. 1497 (1989), 1-5. |
[16] |
J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 Série I (1992), 1231-1234. |
[17] |
J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemp. Math., 140 (1992), 23-30. |
[18] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions, Publ. RIMS (Kyoto), 31 (1995), 1079-1095.
doi: (MR1382568) doi:10.2977/prims/1195163598. |
[19] |
J. Boman, (joint work with Svante Linusson), Examples of non-uniqueness for the combinatorial Radon transform modulo the symmetric group, Math. Scand., 78 (1996), 207-212. |
[20] |
J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of hyperfunctions, Contemp. Math., 251 (2000), 61-82. |
[21] |
J. Boman, (joint work with Lars Hörmander), A Payley-Wiener theorem for the analytic wave front set, Asian J. Math., 3 (1999), 757-769. |
[22] |
J. Boman, (joint work with Jan-Olov Strömberg), Novikov's inversion formula for the attenuated Radon transform-A new approach, J. Geom. Anal., 14 (2004), 185-198. |
[23] |
J. Boman, (joint work with Filip Lindskog), Support theorems for the Radon transform and Cramér-Wold theorems, J. Theor. Probab., 22 (2008), 683-710.
doi: doi:10.1007/s10959-008-0151-0. |
[24] |
J. Boman, The mathematics of tomography. On a mathematical theory with many new applications (Swedish), Normat, 56 (2008), 177-186. |
[25] |
J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in this issue. |
[26] |
J. Boman, (joint work with Dieudonné Agbor), On the modulus of continuity of mappings between Euclidean spaces, to appear in Math. Scand. |
[27] |
J. Boman, A local uniqueness theorem for a weighted Radon transform, Inverse Probl. Imaging, in this issue. |
[28] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes, C. R. Acad. Sci. Paris, Série I, 347 (2009), 1351-1354. |
[29] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators,'' Vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. |
[30] |
R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.
doi: doi:10.1007/BF02384507. |
[31] |
S. Gindikin, A Remark on the weighted Radon transform on the plane, J. Inverse Probl. Imaging, in this issue. |
[32] |
H. S. Shapiro, A Tauberian theorem related to approximation theory, Acta Math., 120 (1968), 279-292.
doi: doi:10.1007/BF02394612. |
show all references
References:
[1] |
J. Boman, On the propagation of analyticity of solutions of differential equations with constant coefficients, Ark. Mat., 5 (1964), 271-279.
doi: doi:10.1007/BF02591127. |
[2] |
J. Boman, On the intersection of classes of infinitely differentiable functions, Ark. Mat., 5 (1964), 301-309.
doi: doi:10.1007/BF02591130. |
[3] |
J. Boman, Partial regularity of mappings between Euclidean spaces, Acta Math., 119 (1967), 1-25.
doi: doi:10.1007/BF02392077. |
[4] |
J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268. |
[5] |
J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Bull. Amer. Math. Soc., 75 (1969), 1266-1268.
doi: doi:10.1090/S0002-9904-1969-12387-6. |
[6] |
J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity, Ark. Mat., 9 (1971), 91-116.
doi: doi:10.1007/BF02383639. |
[7] |
J. Boman, Saturation problems and distribution theory, Appendix I in "Topics in Approximation Theory," by H. S. Shapiro, Lecture Notes in Mathematics, no. 187 (1971), pp. 249-266. |
[8] |
J. Boman, Equivalence of generalized moduli of continuity, Ark. Mat., 18 (1980), 73-100.
doi: doi:10.1007/BF02384682. |
[9] |
J. Boman, On the closure of spaces of sums of ridge functions and the range of the X-ray transform, Ann. Inst. Fourier (Grenoble), 34 (1984), 207-239. |
[10] |
J. Boman, An example of non-uniqueness for a generalized Radon transform, J. d'Anal. Math., 61 (1993), 395-401.
doi: doi:10.1007/BF02788850. |
[11] |
J. Boman, (joint work with E. T. Quinto) Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.
doi: doi:10.1215/S0012-7094-87-05547-5. |
[12] |
J. Boman, The sum of two plane convex $C^{\infty}$ sets is not always $C^5$, Math. Scand., 66 (1990), 216-224. |
[13] |
J. Boman, Smoothness of sums of convex sets with real analytic boundaries, Math. Scand., 66 (1990), 225-230. |
[14] |
J. Boman, (joint work with E. T. Quinto), Support theorems for real-analytic Radon transforms on line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877-890.
doi: doi:10.2307/2154410. |
[15] |
J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization, Lecture Notes in Mathematics no. 1497 (1989), 1-5. |
[16] |
J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 Série I (1992), 1231-1234. |
[17] |
J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemp. Math., 140 (1992), 23-30. |
[18] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions, Publ. RIMS (Kyoto), 31 (1995), 1079-1095.
doi: (MR1382568) doi:10.2977/prims/1195163598. |
[19] |
J. Boman, (joint work with Svante Linusson), Examples of non-uniqueness for the combinatorial Radon transform modulo the symmetric group, Math. Scand., 78 (1996), 207-212. |
[20] |
J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of hyperfunctions, Contemp. Math., 251 (2000), 61-82. |
[21] |
J. Boman, (joint work with Lars Hörmander), A Payley-Wiener theorem for the analytic wave front set, Asian J. Math., 3 (1999), 757-769. |
[22] |
J. Boman, (joint work with Jan-Olov Strömberg), Novikov's inversion formula for the attenuated Radon transform-A new approach, J. Geom. Anal., 14 (2004), 185-198. |
[23] |
J. Boman, (joint work with Filip Lindskog), Support theorems for the Radon transform and Cramér-Wold theorems, J. Theor. Probab., 22 (2008), 683-710.
doi: doi:10.1007/s10959-008-0151-0. |
[24] |
J. Boman, The mathematics of tomography. On a mathematical theory with many new applications (Swedish), Normat, 56 (2008), 177-186. |
[25] |
J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Probl. Imaging, in this issue. |
[26] |
J. Boman, (joint work with Dieudonné Agbor), On the modulus of continuity of mappings between Euclidean spaces, to appear in Math. Scand. |
[27] |
J. Boman, A local uniqueness theorem for a weighted Radon transform, Inverse Probl. Imaging, in this issue. |
[28] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes, C. R. Acad. Sci. Paris, Série I, 347 (2009), 1351-1354. |
[29] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators,'' Vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. |
[30] |
R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.
doi: doi:10.1007/BF02384507. |
[31] |
S. Gindikin, A Remark on the weighted Radon transform on the plane, J. Inverse Probl. Imaging, in this issue. |
[32] |
H. S. Shapiro, A Tauberian theorem related to approximation theory, Acta Math., 120 (1968), 279-292.
doi: doi:10.1007/BF02394612. |
[1] |
Alexander Plakhov. Mathematical retroreflectors. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1211-1235. doi: 10.3934/dcds.2011.30.1211 |
[2] |
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010 |
[3] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[4] |
Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209 |
[5] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[6] |
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i |
[7] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[8] |
Mikhail Gilman, Semyon Tsynkov. A mathematical perspective on radar interferometry. Inverse Problems and Imaging, 2022, 16 (1) : 119-152. doi: 10.3934/ipi.2021043 |
[9] |
Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279 |
[10] |
Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061 |
[11] |
Avner Friedman. PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691 |
[12] |
Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 83-99. doi: 10.3934/mbe.2016.13.83 |
[13] |
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147 |
[14] |
Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521 |
[15] |
Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271 |
[16] |
Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649 |
[17] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[18] |
Mirosław Lachowicz, Martin Parisot, Zuzanna Szymańska. Intracellular protein dynamics as a mathematical problem. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2551-2566. doi: 10.3934/dcdsb.2016060 |
[19] |
M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 |
[20] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]