-
Previous Article
A remark on the weighted Radon transform on the plane
- IPI Home
- This Issue
-
Next Article
A local uniqueness theorem for weighted Radon transforms
Special functions
1. | Department of Mathematics, Temple University, Philadelphia, PA 19122, United States |
References:
[1] |
L. Ehrenpreis, "Fourier Analysis in Several Complex Variables," Wiley & Sons, Interscience, 1970. |
[2] |
L. Ehrenpreis, "The Universality of the Radon Transform," Oxford University Press, 2003.
doi: doi:10.1093/acprof:oso/9780198509783.001.0001. |
[3] |
L. Ehrenpreis, Hypergeometric functions, in "Algebraic Analysis," vol. I, Academic Press, New York, (1988), 85-128. |
[4] |
H. Farkas and I. Kra, "Riemann Surfaces," Springer-Verlag, 1992. |
[5] |
E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics," Cambridge University Press, 1931. |
[6] |
E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature," Longman, Sci. Tech., Wiley & Sons, New York 1986. |
[7] |
W. Miller, Jr., "Symmetry and Separation of Variables," Addison-Wesley Publ. Co., Reading, Mass., 1977. |
[8] |
N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions," Kluwer Acad. Publ., Dortrecht, Netherlands, 1991. |
show all references
References:
[1] |
L. Ehrenpreis, "Fourier Analysis in Several Complex Variables," Wiley & Sons, Interscience, 1970. |
[2] |
L. Ehrenpreis, "The Universality of the Radon Transform," Oxford University Press, 2003.
doi: doi:10.1093/acprof:oso/9780198509783.001.0001. |
[3] |
L. Ehrenpreis, Hypergeometric functions, in "Algebraic Analysis," vol. I, Academic Press, New York, (1988), 85-128. |
[4] |
H. Farkas and I. Kra, "Riemann Surfaces," Springer-Verlag, 1992. |
[5] |
E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics," Cambridge University Press, 1931. |
[6] |
E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature," Longman, Sci. Tech., Wiley & Sons, New York 1986. |
[7] |
W. Miller, Jr., "Symmetry and Separation of Variables," Addison-Wesley Publ. Co., Reading, Mass., 1977. |
[8] |
N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions," Kluwer Acad. Publ., Dortrecht, Netherlands, 1991. |
[1] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41 |
[2] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75 |
[3] |
Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21 |
[4] |
Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1 |
[5] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[6] |
Gümrah Uysal. On a special class of modified integral operators preserving some exponential functions. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2021044 |
[7] |
Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2020, 14 (2) : 247-263. doi: 10.3934/amc.2020018 |
[8] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[9] |
Genni Fragnelli, Dimitri Mugnai, Maria Cesarina Salvatori. Preface to this special issue. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : i-ii. doi: 10.3934/dcdss.2020147 |
[10] |
Genni Fragnelli, Luca Lorenzi, Alain Miranville. Preface to this special issue. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : i-iii. doi: 10.3934/dcdss.2020080 |
[11] |
Genni Fragnelli, Jerome A. Goldstein, Alain Miranville. Preface to this special issue. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : i-ii. doi: 10.3934/dcdss.2020422 |
[12] |
Yihong Du, Je-Chiang Tsai, Feng-Bin Wang, Xiao-Qiang Zhao. Preface of the special issue. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : i-ii. doi: 10.3934/dcdsb.2021071 |
[13] |
Alain Miranville. Special issue dedicated to SFBT 2017. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : i-i. doi: 10.3934/dcdss.2020179 |
[14] |
Juan Gabriel Brida, Viktoriya Semeshenko. Special Issue on: Complex systems in economics. Journal of Dynamics and Games, 2020, 7 (3) : i-ii. doi: 10.3934/jdg.2020011 |
[15] |
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Special issue dedicated to Professor David Paul Mason. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : iii-iv. doi: 10.3934/dcdss.2020416 |
[16] |
Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i |
[17] |
Marius Tucsnak. Preface to the special issue on control of infinite dimensional systems. Mathematical Control and Related Fields, 2019, 9 (4) : i-ii. doi: 10.3934/mcrf.2019042 |
[18] |
Adrian Constantin, Joachim Escher. Introduction to the special issue on hydrodynamic model equations. Communications on Pure and Applied Analysis, 2012, 11 (4) : i-iii. doi: 10.3934/cpaa.2012.11.4i |
[19] |
Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829 |
[20] |
Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]