-
Previous Article
The Gauss-Bonnet-Grotemeyer Theorem in space forms
- IPI Home
- This Issue
-
Next Article
Special functions
A remark on the weighted Radon transform on the plane
1. | Departm. of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States |
References:
[1] |
R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.
doi: doi:10.1007/BF02384507. |
[2] |
I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves, Funct. Anal. Appl., 13 (1980), 87-102.
doi: doi:10.1007/BF01077241. |
show all references
References:
[1] |
R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.
doi: doi:10.1007/BF02384507. |
[2] |
I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves, Funct. Anal. Appl., 13 (1980), 87-102.
doi: doi:10.1007/BF01077241. |
[1] |
Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029 |
[2] |
C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457 |
[3] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[4] |
Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879 |
[5] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[6] |
Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023 |
[7] |
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721 |
[8] |
Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341 |
[9] |
Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835 |
[10] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[11] |
Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems and Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631 |
[12] |
Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232 |
[13] |
Peter Seibt. A period formula for torus automorphisms. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029 |
[14] |
Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187 |
[15] |
Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 |
[16] |
Masaaki Fukasawa, Jim Gatheral. A rough SABR formula. Frontiers of Mathematical Finance, 2022, 1 (1) : 81-97. doi: 10.3934/fmf.2021003 |
[17] |
Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649 |
[18] |
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006 |
[19] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[20] |
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]