November  2010, 4(4): 649-653. doi: 10.3934/ipi.2010.4.649

A remark on the weighted Radon transform on the plane

1. 

Departm. of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States

Received  January 2009 Revised  May 2010 Published  September 2010

We consider a class of weights on the plane for which the weighted Radon transform admits an inversion formula similar to the classical one. These transforms are naturally dual to the attenuated Radon.
Citation: Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649
References:
[1]

R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167. doi: doi:10.1007/BF02384507.  Google Scholar

[2]

I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves, Funct. Anal. Appl., 13 (1980), 87-102. doi: doi:10.1007/BF01077241.  Google Scholar

show all references

References:
[1]

R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167. doi: doi:10.1007/BF02384507.  Google Scholar

[2]

I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves, Funct. Anal. Appl., 13 (1980), 87-102. doi: doi:10.1007/BF01077241.  Google Scholar

[1]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[2]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[3]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[4]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[5]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[6]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[7]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[8]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[9]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[10]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021047

[11]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[12]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[13]

Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[14]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[15]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[16]

Masaaki Fukasawa, Jim Gatheral. A rough SABR formula. Frontiers of Mathematical Finance, 2022, 1 (1) : 81-97. doi: 10.3934/fmf.2021003

[17]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[18]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[19]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[20]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]