November  2010, 4(4): 655-664. doi: 10.3934/ipi.2010.4.655

The Gauss-Bonnet-Grotemeyer Theorem in space forms

1. 

Department of Mathematics & Statistics, University of New Hampshire, Durham, NH 03824, United States

2. 

Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China

Received  January 2009 Revised  July 2009 Published  September 2010

In 1963, K.P.~Grotemeyer proved an interesting variant of the Gauss-Bonnet Theorem. Let $M$ be an oriented closed surface in the Euclidean space $\mathbb R^3$ with Euler characteristic $\chi(M)$, Gauss curvature $G$ and unit normal vector field $\vec n$. Grotemeyer's identity replaces the Gauss-Bonnet integrand $G$ by the normal moment $ ( \vec a \cdot \vec n )^2G$, where $a$ is a fixed unit vector: $ \int_M(\vec a\cdot \vec n)^2 Gdv=\frac{2 \pi}{3}\chi(M) $. We generalize Grotemeyer's result to oriented closed even-dimensional hypersurfaces of dimension $n$ in an $(n+1)$-dimensional space form $N^{n+1}(k)$.
Citation: Eric L. Grinberg, Haizhong Li. The Gauss-Bonnet-Grotemeyer Theorem in space forms. Inverse Problems and Imaging, 2010, 4 (4) : 655-664. doi: 10.3934/ipi.2010.4.655
References:
[1]

J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature, Ann. Global Anal. Geom., 15 (1997), 277-297. doi: doi:10.1023/A:1006514303828.

[2]

I. Bivens, Integral formulas and hyperspheres in a simply connected space form, Proc. Amer. Math. Soc., 88 (1983), 113-118.

[3]

B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer, Proc. Amer. Math. Soc., 28 (1971), 208-212.

[4]

S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204. doi: doi:10.1007/BF01425237.

[5]

S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2), 45 (1944), 747-752. doi: doi:10.2307/1969302.

[6]

S. S. Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math. (2), 46 (1945), 674-684. doi: doi:10.2307/1969203.

[7]

K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten, Ann. Acad. Sci. Fenn., Ser. A. I. No. 336/15 (1963), 1-12.

[8]

H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665-672. doi: doi:10.1007/BF01444243.

[9]

H. Li, Global rigidity theorems of hypersurfaces, Ark. Math., 35 (1997), 327-351. doi: doi:10.1007/BF02559973.

[10]

R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom., 8 (1973), 465-477.

[11]

H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117 (1993), 211-239.

[12]

G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces, Trans. Amer. Math. Soc., 358 (2006), 1105-1115. doi: doi:10.1090/S0002-9947-05-03828-6.

[13]

K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen, Math. Ann., 131 (1956), 180-218.

show all references

References:
[1]

J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature, Ann. Global Anal. Geom., 15 (1997), 277-297. doi: doi:10.1023/A:1006514303828.

[2]

I. Bivens, Integral formulas and hyperspheres in a simply connected space form, Proc. Amer. Math. Soc., 88 (1983), 113-118.

[3]

B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer, Proc. Amer. Math. Soc., 28 (1971), 208-212.

[4]

S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204. doi: doi:10.1007/BF01425237.

[5]

S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2), 45 (1944), 747-752. doi: doi:10.2307/1969302.

[6]

S. S. Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math. (2), 46 (1945), 674-684. doi: doi:10.2307/1969203.

[7]

K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten, Ann. Acad. Sci. Fenn., Ser. A. I. No. 336/15 (1963), 1-12.

[8]

H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665-672. doi: doi:10.1007/BF01444243.

[9]

H. Li, Global rigidity theorems of hypersurfaces, Ark. Math., 35 (1997), 327-351. doi: doi:10.1007/BF02559973.

[10]

R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom., 8 (1973), 465-477.

[11]

H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117 (1993), 211-239.

[12]

G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces, Trans. Amer. Math. Soc., 358 (2006), 1105-1115. doi: doi:10.1090/S0002-9947-05-03828-6.

[13]

K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen, Math. Ann., 131 (1956), 180-218.

[1]

Qiang Tu. A class of prescribed shifted Gauss curvature equations for horo-convex hypersurfaces in $ \mathbb{H}^{n+1} $. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5397-5407. doi: 10.3934/dcds.2021081

[2]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[3]

Andrei Agrachev, Ugo Boscain, Mario Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 801-822. doi: 10.3934/dcds.2008.20.801

[4]

Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143

[5]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[6]

Pei Yean Lee, John B Moore. Gauss-Newton-on-manifold for pose estimation. Journal of Industrial and Management Optimization, 2005, 1 (4) : 565-587. doi: 10.3934/jimo.2005.1.565

[7]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[8]

Yuezheng Gong, Jiaquan Gao, Yushun Wang. High order Gauss-Seidel schemes for charged particle dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 573-585. doi: 10.3934/dcdsb.2018034

[9]

Xin Yang, Nan Wang, Lingling Xu. A parallel Gauss-Seidel method for convex problems with separable structure. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 557-570. doi: 10.3934/naco.2020051

[10]

Giuseppina di Blasio, Filomena Feo, Maria Rosaria Posteraro. Existence results for nonlinear elliptic equations related to Gauss measure in a limit case. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1497-1506. doi: 10.3934/cpaa.2008.7.1497

[11]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189

[12]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[13]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[14]

Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

[15]

Katsuyuki Ishii, Takahiro Izumi. Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1103-1125. doi: 10.3934/dcds.2018046

[16]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[17]

Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4143-4158. doi: 10.3934/cpaa.2020185

[18]

Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial and Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189

[19]

Alessandro Viani, Gianvittorio Luria, Alberto Sorrentino, Harald Bornfleth. Where Bayes tweaks Gauss: Conditionally Gaussian priors for stable multi-dipole estimation. Inverse Problems and Imaging, 2021, 15 (5) : 1099-1119. doi: 10.3934/ipi.2021030

[20]

Panchi Li, Zetao Ma, Rui Du, Jingrun Chen. A Gauss-Seidel projection method with the minimal number of updates for the stray field in micromagnetics simulations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022002

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]