November  2010, 4(4): 693-702. doi: 10.3934/ipi.2010.4.693

Remarks on the general Funk transform and thermoacoustic tomography

1. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel

Received  June 2009 Published  September 2010

We discuss properties of a generalized Minkowski-Funk transform defined for a family of hypersurfaces. We prove two-side estimates and show that the range conditions can be written in terms of the reciprocal Funk transform. Some applications to the spherical mean transform are considered.
Citation: Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693
References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal., 248 (2007), 344-386. doi: doi:10.1016/j.jfa.2007.03.022.

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data, in "Integral Geometry and Tomography," 19-26, Amer. Math. Soc., Providence, RI, 2006.

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball, Inverse Problems, 22 (2006), 923-938. doi: doi:10.1088/0266-5611/22/3/012.

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann., 74 (1913), 278-300. doi: doi:10.1007/BF01456044.

[5]

V. Guillemin, On some results of Gelfand in integral geometry, in "Pseudodifferential Operators and Applications," 149-155, Proc. Sympos.Pure Math., 43, Amer. Math. Soc., Provindence, RI, 1985.

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators," Springer, 1985.

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry, Dokl. Akad. Nauk SSSR, 211 (1973), 38-39.

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane, in "Methods of Functional Analysis in Problems of Mathematical Physics (Russian)," 30-37, Akad. Nauk Ukrain. SSR, 180, Inst. Mat., Kiev, 1978.

[9]

F. Natterer, "The Mathematics of Computerized Tomography," B.G.Teubner, John Wiley & Sons, Stuttgart, 1986.

[10]

S. K. Patch, Moment conditions indirectly improve image quality, in "Radon Transform and Tomography," 193-205, Amer. Math. Soc., Providence, RI, 2001.

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging, Inverse Problems, 23 (2007), S1-S10.

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions, Funct. Anal. Appl., 35 (2001), 270-283. doi: doi:10.1023/A:1013126507543.

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography, Probl. Inf. Transm., 40 (2004), 254-278. doi: doi:10.1023/B:PRIT.0000044261.87490.05.

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc., 257 (1980), 331-346.

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data, Inverse Problems, 20 (2004), 781-797. doi: doi:10.1088/0266-5611/20/3/008.

show all references

References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal., 248 (2007), 344-386. doi: doi:10.1016/j.jfa.2007.03.022.

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data, in "Integral Geometry and Tomography," 19-26, Amer. Math. Soc., Providence, RI, 2006.

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball, Inverse Problems, 22 (2006), 923-938. doi: doi:10.1088/0266-5611/22/3/012.

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann., 74 (1913), 278-300. doi: doi:10.1007/BF01456044.

[5]

V. Guillemin, On some results of Gelfand in integral geometry, in "Pseudodifferential Operators and Applications," 149-155, Proc. Sympos.Pure Math., 43, Amer. Math. Soc., Provindence, RI, 1985.

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators," Springer, 1985.

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry, Dokl. Akad. Nauk SSSR, 211 (1973), 38-39.

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane, in "Methods of Functional Analysis in Problems of Mathematical Physics (Russian)," 30-37, Akad. Nauk Ukrain. SSR, 180, Inst. Mat., Kiev, 1978.

[9]

F. Natterer, "The Mathematics of Computerized Tomography," B.G.Teubner, John Wiley & Sons, Stuttgart, 1986.

[10]

S. K. Patch, Moment conditions indirectly improve image quality, in "Radon Transform and Tomography," 193-205, Amer. Math. Soc., Providence, RI, 2001.

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging, Inverse Problems, 23 (2007), S1-S10.

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions, Funct. Anal. Appl., 35 (2001), 270-283. doi: doi:10.1023/A:1013126507543.

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography, Probl. Inf. Transm., 40 (2004), 254-278. doi: doi:10.1023/B:PRIT.0000044261.87490.05.

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc., 257 (1980), 331-346.

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data, Inverse Problems, 20 (2004), 781-797. doi: doi:10.1088/0266-5611/20/3/008.

[1]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[2]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[3]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[4]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[5]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[6]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[7]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[8]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[9]

William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020

[10]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047

[11]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[12]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[13]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[14]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems and Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[15]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[16]

Chase Mathison. Thermoacoustic Tomography with circular integrating detectors and variable wave speed. Inverse Problems and Imaging, 2020, 14 (4) : 665-682. doi: 10.3934/ipi.2020030

[17]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[18]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 315-338. doi: 10.3934/dcdss.2021011

[19]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[20]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]