-
Previous Article
Local Sobolev estimates of a function by means of its Radon transform
- IPI Home
- This Issue
-
Next Article
Numerical recovering of a density by the BC-method
X-ray transform on Damek-Ricci spaces
1. | Laboratoire J.A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France |
Using suitably chosen totally geodesic submanifolds we reduce the problems to similar questions on low-dimensional hyperbolic spaces.
References:
[1] |
M. Cowling, A. Dooley, A. Korányi and F. Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math., 87 (1991), 1-41.
doi: doi:10.1016/0001-8708(91)90060-K. |
[2] |
M. Cowling, A. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., 8 (1998), 199-237. |
[3] |
E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc., 27 (1992), 139-142.
doi: doi:10.1090/S0273-0979-1992-00293-8. |
[4] |
E. Damek and F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups, J. Geom. Anal., 2 (1992), 213-248. |
[5] |
S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, 1978. |
[6] |
S. Helgason, "The Radon Transform," second edition, Birkhäuser, 1999. |
[7] |
S. Helgason, The Abel, Fourier and Radon transforms on symmetric spaces, Indag. Math., 16 (2005), 531-551, arXiv:math/0506049. |
[8] |
F. Rouvière, Espaces de Damek-Ricci, géométrie et analyse, Sémin. Congr., 7, Soc. Math. France, 2003, 45-100. |
[9] |
, revised version of [8] at http://math.unice.fr/ frou/recherche/Damek-Ricci.pdf |
[10] |
F. Rouvière, Transformation aux rayons X sur un espace symétrique, C. R. Math. Acad. Sci. Paris, 342 (2006), 1-6. |
show all references
References:
[1] |
M. Cowling, A. Dooley, A. Korányi and F. Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math., 87 (1991), 1-41.
doi: doi:10.1016/0001-8708(91)90060-K. |
[2] |
M. Cowling, A. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., 8 (1998), 199-237. |
[3] |
E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc., 27 (1992), 139-142.
doi: doi:10.1090/S0273-0979-1992-00293-8. |
[4] |
E. Damek and F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups, J. Geom. Anal., 2 (1992), 213-248. |
[5] |
S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, 1978. |
[6] |
S. Helgason, "The Radon Transform," second edition, Birkhäuser, 1999. |
[7] |
S. Helgason, The Abel, Fourier and Radon transforms on symmetric spaces, Indag. Math., 16 (2005), 531-551, arXiv:math/0506049. |
[8] |
F. Rouvière, Espaces de Damek-Ricci, géométrie et analyse, Sémin. Congr., 7, Soc. Math. France, 2003, 45-100. |
[9] |
, revised version of [8] at http://math.unice.fr/ frou/recherche/Damek-Ricci.pdf |
[10] |
F. Rouvière, Transformation aux rayons X sur un espace symétrique, C. R. Math. Acad. Sci. Paris, 342 (2006), 1-6. |
[1] |
Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 |
[2] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[3] |
Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089 |
[4] |
Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems and Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147 |
[5] |
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 |
[6] |
Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems and Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257 |
[7] |
Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems and Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69 |
[8] |
Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems and Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015 |
[9] |
Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems and Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431 |
[10] |
Weihao Shen, Wenbo Xu, Hongyang Zhang, Zexin Sun, Jianxiong Ma, Xinlong Ma, Shoujun Zhou, Shijie Guo, Yuanquan Wang. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems and Imaging, 2021, 15 (6) : 1333-1346. doi: 10.3934/ipi.2020057 |
[11] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[12] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[13] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[14] |
Valeria Banica, Rémi Carles, Thomas Duyckaerts. On scattering for NLS: From Euclidean to hyperbolic space. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1113-1127. doi: 10.3934/dcds.2009.24.1113 |
[15] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[16] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[17] |
Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169 |
[18] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[19] |
Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184 |
[20] |
Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]