February  2010, 4(1): 93-110. doi: 10.3934/ipi.2010.4.93

An inverse spectral theory for finite CMV matrices


Institute for Low Temperature Physics and Engineering, 47 Lenin ave., Kharkov, 61103, Ukraine, Ukraine

Received  December 2008 Revised  October 2009 Published  February 2010

For finite dimensional CMV matrices the classical inverse spectral problems are considered. We solve the inverse problem of reconstructing a CMV matrix by its Weyl's function, the problem of reconstructing the matrix by two spectra of CMV operators with different "boundary condition'', and the problem of reconstructing a CMV matrix by its spectrum and the spectrum of the CMV matrix obtained from it by unitary truncation.
Citation: Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems and Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.


Lu Yang, Guangsheng Wei, Vyacheslav Pivovarchik. Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex. Inverse Problems and Imaging, 2021, 15 (2) : 257-270. doi: 10.3934/ipi.2020063


Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1


David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039


Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems and Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239


Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029


Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems and Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843


Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939


Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885


Antoine Henrot, El-Haj Laamri, Didier Schmitt. On some spectral problems arising in dynamic populations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2429-2443. doi: 10.3934/cpaa.2012.11.2429


Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115


Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139


Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011


Gabriella Di Blasio, Alfredo Lorenzi. Direct and inverse problems in age--structured population diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 539-563. doi: 10.3934/dcdss.2011.4.539


Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025


Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711


Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413


Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1


Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042


ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021150

2021 Impact Factor: 1.483


  • PDF downloads (91)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]