\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Identifying a space dependent coefficient in a reaction-diffusion equation

Abstract Related Papers Cited by
  • We consider a reaction-diffusion equation for the front motion $u$ in which the reaction term is given by $c(x)g(u)$. We formulate a suitable inverse problem for the unknowns $u$ and $c$, where $u$ satisfies homogeneous Neumann boundary conditions and the additional condition is of integral type on the time interval $[0,T]$. Uniqueness of the solution is proved in the case of a linear $g$. Assuming $g$ non linear, we show uniqueness for large $T$.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Choulli, An inverse problem for a semilinear parabolic equation, Inverse Problems, 10 (1994), 1123-1132.doi: 10.1088/0266-5611/10/5/009.

    [2]

    M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition, Inverse Problems, 13 (1997), 19-27.doi: 10.1088/0266-5611/13/1/003.

    [3]

    M. Choulli and M. Yamamoto, Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation, Nonlinear Anal., 69 (2008), 3983-3998.doi: 10.1016/j.na.2007.10.031.

    [4]

    A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

    [5]

    V. Isakov, Inverse Parabolic Problems with the final overdetermination, Comm. Pure Appl. Math., 44 (1991), 185-209.doi: 10.1002/cpa.3160440203.

    [6]

    V. Isakov, "Inverse Problems for Partial Differential Equations," Second Edition, Springer, New York, 2006.

    [7]

    V. Isakov, Some inverse parabolic problems for the diffusion equation, Inverse Problems, 15 (1999), 3-10.doi: 10.1088/0266-5611/15/1/004.

    [8]

    V. L. Kamynin, On the unique solvability of an inverse problem for parabolic equations under a final overdetermination conditions, Math. Notes, 73 (2003), 202-211.doi: 10.1023/A:1022107024916.

    [9]

    V. L. Kamynin, On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination conditions, Math. Notes, 77 (2005), 482-493.doi: 10.1007/s11006-005-0047-6.

    [10]

    O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," AMS, Providence, RI, 1968.

    [11]

    V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media, Phys. Rev. E (3), 68 (2003), 041105.doi: 10.1103/PhysRevE.68.041105.

    [12]

    C. V. Pao, "Nonlinear Parabolic And Elliptic Equations," Plenum Press, New York, 1992.

    [13]

    A. I. Prilepko and V. V. Solov'ev, Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type II, Diff. Eq., 23 (1987), 1341-1349.

    [14]

    A. B. Kostin and A. I. Prilepko, On certain inverse problems for parabolic equations with final and integral observation, Russian Acad. Sci. Sb. Math., 75 (1993), 473-490.doi: 10.1070/SM1993v075n02ABEH003394.

    [15]

    H. G. Rotstein, A. M. Zhabotinsky and I. R. Epstein, Dynamics of one- and two-dimensional kinds in bistable reaction-diffusion equations with quasidiscrete sources of reaction, Chaos, 11 (2001), 833-842.doi: 10.1063/1.1418459.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(121) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return