\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On an inverse problem in electromagnetism with local data: stability and uniqueness

Abstract Related Papers Cited by
  • In this paper we prove a stable determination of the coefficients of the time-harmonic Maxwell equations from local boundary data. The argument --due to Isakov-- requires some restrictions on the domain.
    Mathematics Subject Classification: Primary: 35R30, 35Q61; Secondary: 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alessandrini, Stable determination of the conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.doi: 10.1080/00036818808839730.

    [2]

    G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., 35 (2005) 207-241.doi: 10.1016/j.aam.2004.12.002.

    [3]

    K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224.doi: 10.1081/PDE-200044485.

    [4]

    R. Brown, Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.doi: 10.1137/S0036141094271132.

    [5]

    A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27 (2002), 653-668.doi: 10.1081/PDE-120002868.

    [6]

    P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm. PDE, 34 (2009), 1425-1464.doi: 10.1080/03605300903296272.

    [7]

    P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements, Inverse Problems, 26 (2010), 105014, 25 pp.

    [8]

    D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), 59-70.doi: 10.1007/BF00376010.

    [9]

    H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22 (2006), 1787-1796.doi: 10.1088/0266-5611/22/5/015.

    [10]

    H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements, preprint (2007) arXiv:0708.3289v1.

    [11]

    V. Isakov, Carleman estimates and applications to inverse problems, Milan J. Math., 72 (2004), 249-271.doi: 10.1007/s00032-004-0033-6.

    [12]

    V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.

    [13]

    D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.doi: 10.1006/jfan.1995.1067.

    [14]

    M. Joshi, S. R. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific J. Math., 193 (2000), 107-129.doi: 10.2140/pjm.2000.193.107.

    [15]

    C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419.doi: 10.1215/00127094-1272903.

    [16]

    C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.doi: 10.4007/annals.2007.165.567.

    [17]

    Y. Kurylev, M. Lassas, Matti and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems, J. Math. Pures Appl., 86 (2006), 237-270.doi: 10.1016/j.matpur.2006.01.008.

    [18]

    R. Leis, "Initial Boundary Value Problems in Mathematical Physics," Wiley, New York, 1986.

    [19]

    H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering, Inverse Problems, 23 (2007), 2357-2366.doi: 10.1088/0266-5611/23/6/005.

    [20]

    S. R. McDowall, An electromagnetic inverse problem in chiral media, Trans. Amer. Math. Soc., 352 (2000), 2993-3013.doi: 10.1090/S0002-9947-00-02518-6.

    [21]

    M. Mitrea, Sharp Hodge decomposition, Maxwell's equations, and vector Poisson problems on non-smooth, three-dimensional riemannian manifolds, Duke Math. J., 125 (2004), 467-547.doi: 10.1215/S0012-7094-04-12322-1.

    [22]

    P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.doi: 10.1215/S0012-7094-93-07014-7.

    [23]

    P. Ola, L. Päivärinta and E. Somersalo, Inverse problems for time harmonic electrodynamics. Inside out: inverse problems and applications, 169-191, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003.

    [24]

    P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145.doi: 10.1137/S0036139995283948.

    [25]

    M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.doi: 10.1007/s00208-008-0301-9.

    [26]

    M. Salo and L. Tzou, Inverse problems with partial data for a Dirac system: A Carleman estimate approach, Adv. Math., 225 (2010), 487-513.doi: 10.1016/j.aim.2010.03.003.

    [27]

    E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations, J. Comp. Appl. Math., 42 (1992), 123-136.doi: 10.1016/0377-0427(92)90167-V.

    [28]

    E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, 1970.

    [29]

    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.

    [30]

    H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut., 15 (2002), 475-524.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return