Advanced Search
Article Contents
Article Contents

On an inverse problem in electromagnetism with local data: stability and uniqueness

Abstract Related Papers Cited by
  • In this paper we prove a stable determination of the coefficients of the time-harmonic Maxwell equations from local boundary data. The argument --due to Isakov-- requires some restrictions on the domain.
    Mathematics Subject Classification: Primary: 35R30, 35Q61; Secondary: 65N21.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Alessandrini, Stable determination of the conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.doi: 10.1080/00036818808839730.


    G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., 35 (2005) 207-241.doi: 10.1016/j.aam.2004.12.002.


    K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224.doi: 10.1081/PDE-200044485.


    R. Brown, Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.doi: 10.1137/S0036141094271132.


    A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27 (2002), 653-668.doi: 10.1081/PDE-120002868.


    P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm. PDE, 34 (2009), 1425-1464.doi: 10.1080/03605300903296272.


    P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements, Inverse Problems, 26 (2010), 105014, 25 pp.


    D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), 59-70.doi: 10.1007/BF00376010.


    H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22 (2006), 1787-1796.doi: 10.1088/0266-5611/22/5/015.


    H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements, preprint (2007) arXiv:0708.3289v1.


    V. Isakov, Carleman estimates and applications to inverse problems, Milan J. Math., 72 (2004), 249-271.doi: 10.1007/s00032-004-0033-6.


    V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.


    D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.doi: 10.1006/jfan.1995.1067.


    M. Joshi, S. R. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific J. Math., 193 (2000), 107-129.doi: 10.2140/pjm.2000.193.107.


    C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419.doi: 10.1215/00127094-1272903.


    C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.doi: 10.4007/annals.2007.165.567.


    Y. Kurylev, M. Lassas, Matti and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems, J. Math. Pures Appl., 86 (2006), 237-270.doi: 10.1016/j.matpur.2006.01.008.


    R. Leis, "Initial Boundary Value Problems in Mathematical Physics," Wiley, New York, 1986.


    H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering, Inverse Problems, 23 (2007), 2357-2366.doi: 10.1088/0266-5611/23/6/005.


    S. R. McDowall, An electromagnetic inverse problem in chiral media, Trans. Amer. Math. Soc., 352 (2000), 2993-3013.doi: 10.1090/S0002-9947-00-02518-6.


    M. Mitrea, Sharp Hodge decomposition, Maxwell's equations, and vector Poisson problems on non-smooth, three-dimensional riemannian manifolds, Duke Math. J., 125 (2004), 467-547.doi: 10.1215/S0012-7094-04-12322-1.


    P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.doi: 10.1215/S0012-7094-93-07014-7.


    P. Ola, L. Päivärinta and E. Somersalo, Inverse problems for time harmonic electrodynamics. Inside out: inverse problems and applications, 169-191, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003.


    P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145.doi: 10.1137/S0036139995283948.


    M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., 344 (2009), 161-184.doi: 10.1007/s00208-008-0301-9.


    M. Salo and L. Tzou, Inverse problems with partial data for a Dirac system: A Carleman estimate approach, Adv. Math., 225 (2010), 487-513.doi: 10.1016/j.aim.2010.03.003.


    E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations, J. Comp. Appl. Math., 42 (1992), 123-136.doi: 10.1016/0377-0427(92)90167-V.


    E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, 1970.


    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.


    H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut., 15 (2002), 475-524.

  • 加载中

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint