\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction

Abstract Related Papers Cited by
  • We present an optimal strategy for the relative weighting of multiple data modalities in inverse problems, and derive the maximum compatibility estimate (MCE) that corresponds to the maximum likelihood or maximum a posteriori estimates in the case of a single data mode. MCE is not explicitly dependent on the noise levels, scale factors or numbers of data points of the complementary data modes, and can be determined without the mode weight parameters. We also discuss discontinuities in the solution estimates in multimodal inverse problems, and derive a corresponding self-consistency criterion. As a case study, we consider the problem of reconstructing the shape and the spin state of a body in $\R^3$ from the boundary curves (profiles) and volumes (brightness values) of its generalized projections in $\R^2$. We also show that the generalized profiles uniquely determine a large class of shapes. We present a solution method well suitable for adaptive optics images in particular, and discuss various choices of regularization functions.
    Mathematics Subject Classification: 68U05, 68T45, 65D18, 52B10, 49N45, 65J22, 85-08.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Zacharopoulos, S. Arridge, O. Dorn, V. Kolehmainen and J. Sikora, Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method, Inverse Problems, 22 (2006), 1509-1532.doi: 10.1088/0266-5611/22/5/001.

    [2]

    M. Belge, M. Kilmer and E. Miller, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Problems, 18 (2002), 1161-1183.doi: 10.1088/0266-5611/18/4/314.

    [3]

    A. Bottino and A. Laurentini, Introducing a new problem: Shape-from-silhouette when the relative positions of the viewpoints are unknown, IEEE Transact. on Pattern Analysis and Machine Intelligence, 25 (2003), 1484-1493doi: 10.1109/TPAMI.2003.1240121.

    [4]

    B. Carry, C. Dumas, M. Fulchignoni, W. Merline, J. Berthier, D. Hestroffer, T. Fusco and P. Tamblyn, Near-infrared mapping and physical properties of the dwarf-planet Ceres, Astron. Astrophys., 478 (2008), 235-244.doi: 10.1051/0004-6361:20078166.

    [5]

    B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas, Icarus, 205 (2010), 460-472.doi: 10.1016/j.icarus.2009.08.007.

    [6]

    B. Carry, A. Conrad, J. Drummond, M. Kaasalainen, W. Merline, J. Berthier and C. DumasThe resolved asteroid program: Size and shape of (41) Daphne, Icarus, submitted.

    [7]

    K. Cheung, S. Baker and T. Kanade, Shape-From-Silhouette across time part I: Theory and algorithms, Int. J. Comp. Vision, 62 (2005), 221-247.doi: 10.1007/s11263-005-4881-5.

    [8]

    P. Descamps and 22 colleagues, New insights on the binary asteroid 121 Hermione, Icarus, 203 (2009), 88-101.doi: 10.1016/j.icarus.2009.04.032.

    [9]

    A. Dobrovolskis, Inertia of any polyhedron, Icarus, 124 (1996), 698-704.doi: 10.1006/icar.1996.0243.

    [10]

    J. Ďurech and M. Kaasalainen., Photometric signatures of highly nonconvex and binary asteroids, Astron. Astrophys., 404 (2003), 709-714.doi: 10.1051/0004-6361:20030505.

    [11]

    H. Engl and W. Grever, Using the L-curve for determining optimal regularization parameters, Numer. Math., 69 (1994), 25-31.doi: 10.1007/s002110050078.

    [12]

    H. Goldstein, "Classical Mechanics" (second edition), Addison-Wesley, Reading, Mass., 1980.

    [13]

    M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT, 36 (1996), 287-301.doi: 10.1007/BF01731984.

    [14]

    M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes, Astron. Astrophys., 259 (1992), 318-332.

    [15]

    M. Kaasalainen and J. Torppa, Optimization methods for asteroid lightcurve inversion. I. Shape determination, Icarus, 153 (2001), 24-36.doi: 10.1006/icar.2001.6673.

    [16]

    M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem, Icarus, 153 (2001), 37-51.doi: 10.1006/icar.2001.6674.

    [17]

    M. Kaasalainen, Interpretation of lightcurves of precessing asteroids, Astron. Astrophys., 376 (2001), 302-309.doi: 10.1051/0004-6361:20010935.

    [18]

    M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators, Inverse Problems, 22 (2006), 749-769.doi: 10.1088/0266-5611/22/3/002.

    [19]

    M. Kaasalainen and J. Ďurech, Inverse problems of NEO photometry: Imaging the NEO population, in "Proceedings of IAU: Symposium 236" (Milani, Valsecchi, and Vokrouhlicky, eds.), 2, Cambridge (2007), 151-166.

    [20]

    M. Kaasalainen, J. Ďurech, B. Warner, Y. Krugly and N. Gaftonyuk, Acceleration of the rotation of asteroid 1862 Apollo by radiation torques, Nature, 446 (2007), 420-422.doi: 10.1038/nature05614.

    [21]

    J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, New York, 2005.

    [22]

    H. U.Keller and 46 colleagues, E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta, Science, 327 (2010), 190-193doi: 10.1126/science.1179559.

    [23]

    D. Levin, The approximation power of moving least squares, Math. Comp., 67 (1998), 1517-1531.doi: 10.1090/S0025-5718-98-00974-0.

    [24]

    F. Marchis, M. Kaasalainen, E. Hom, J. Berthier, J. Enriquez, D. Hestroffer, D. Le Mignant and I. de Pater, Shape, size and multiplicity of main-belt asteroids. I. Keck adaptive optics survey, Icarus, 185 (2006), 39-63.doi: 10.1016/j.icarus.2006.06.001.

    [25]

    P. Pravec, A. Harris and T. Michalowski, Asteroid rotations, in "Asteroids III" (Bottke, Cellino, Paolicchi and Binzel, eds.), U. Arizona Press, Tucson, (2002), 113-122.

    [26]

    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes" (third edition), Cambridge U. Press, New York, 2007.

    [27]

    S. Savarese, M. Andretto, H. Rushmeier, F. Bernardini and P. Perona, 3D reconstruction by shadow carving: Theory and practical evaluation, Int. J. Comp. Vision, 71 (2007), 305-336.doi: 10.1007/s11263-006-8323-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return