May  2011, 5(2): 465-483. doi: 10.3934/ipi.2011.5.465

Near field sampling type methods for the inverse fluid--solid interaction problem

1. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716

2. 

Departamento de Matemáticas, Universidad de A Coruña, 15707 A Coruña

Received  April 2010 Revised  July 2010 Published  May 2011

The inverse fluid--solid interaction problem considered here is to determine the shape of an elastic body from pressure measurements made in the near field. In particular we assume that the elastic body is probed by pressure waves due to point sources, and the resulting scattered field and the normal derivative of the scattered field is available for every source and receiver combination on the source and measurement curves. We provide an analysis of the Reciprocity Gap (RG) method in this case, as well as the Linear Sampling Method (LSM). A novelty of our analysis is that we exhibit a connection between the RG method and a non--standard LSM using sources and receivers on different curves. We provide numerical tests of the algorithms using both synthetic and real data.
Citation: Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465
References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inv. Prob., 22 (2006), 845-867.

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects," in Mathematical methods in scattering theory and biomedical engineering, World Sci. Publ., Hackensack, NJ, 2006, 19-30. doi: 10.1142/9789812773197_0003.

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), 369-414. doi: 10.1137/S0036144500367337.

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inv. Prob., 21 (2005), 383-398.

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd edition, Springer-Verlag, New York, 1998.

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inv. Prob., 13 (1997), 1477-1493.

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction, Inverse Problems and Imaging, 2 (2007), 83-119.

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle, SIAM J. Appl. Math., 70 (2009), 168-187. doi: 10.1137/080736922.

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves, WAIS preprint No. 1479, 2010

[10]

T. Hargé, Valeurs propres d'un corps élastique, C. R. Acad. Sci. Paris, Sér. I Math., 311 (1990), 857-859.

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., (2000), 139-163.

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction, J. Comput. Appl. Math., 213 (2008), 166-185. doi: 10.1016/j.cam.2006.12.030.

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering, in Boundary Elements IX (eds. C. Brebbia, W. Wendland and G. Kuhn), Springer, Heidelberg, 1987, 3-18.

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922. doi: 10.1137/S0036139993259027.

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems, J. Comput. Phys., 199 (2004), 205-220. doi: 10.1016/j.jcp.2004.02.005.

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), 173-198. doi: 10.3934/ipi.2009.3.173.

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems, Rendiconti di Matematica, Serie VII, 20 (2000), 57-92.

show all references

References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inv. Prob., 22 (2006), 845-867.

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects," in Mathematical methods in scattering theory and biomedical engineering, World Sci. Publ., Hackensack, NJ, 2006, 19-30. doi: 10.1142/9789812773197_0003.

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), 369-414. doi: 10.1137/S0036144500367337.

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inv. Prob., 21 (2005), 383-398.

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd edition, Springer-Verlag, New York, 1998.

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inv. Prob., 13 (1997), 1477-1493.

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction, Inverse Problems and Imaging, 2 (2007), 83-119.

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle, SIAM J. Appl. Math., 70 (2009), 168-187. doi: 10.1137/080736922.

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves, WAIS preprint No. 1479, 2010

[10]

T. Hargé, Valeurs propres d'un corps élastique, C. R. Acad. Sci. Paris, Sér. I Math., 311 (1990), 857-859.

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., (2000), 139-163.

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction, J. Comput. Appl. Math., 213 (2008), 166-185. doi: 10.1016/j.cam.2006.12.030.

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering, in Boundary Elements IX (eds. C. Brebbia, W. Wendland and G. Kuhn), Springer, Heidelberg, 1987, 3-18.

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922. doi: 10.1137/S0036139993259027.

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems, J. Comput. Phys., 199 (2004), 205-220. doi: 10.1016/j.jcp.2004.02.005.

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), 173-198. doi: 10.3934/ipi.2009.3.173.

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems, Rendiconti di Matematica, Serie VII, 20 (2000), 57-92.

[1]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[2]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[5]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems and Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[6]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[7]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[8]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009

[9]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[10]

Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505

[11]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[12]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure and Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[13]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[16]

Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems and Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016

[17]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems and Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[18]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[19]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[20]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]