Citation: |
[1] |
A. Adler, R. Guardo, and Y. Berthiaume, Impedance imaging of lung ventilation: Do we need to account for chest expansion? IEEE Trans. Biomed. Eng., 43 (1996), 414-420.doi: 10.1109/10.486261. |
[2] |
G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Eq., 84 (1990), 252-273.doi: 10.1016/0022-0396(90)90078-4. |
[3] |
K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265. |
[4] |
J. Bikowski, "Electrical Impedance Tomography Reconstructions in two and three Dimensions; From Calderón to Direct Methods," Ph.D thesis, Colorado State University, 2008. |
[5] |
R. Blue, "Real-time Three-dimensional Electrical Impedance Tomography," Ph.D thesis, R.P.I. in Troy, NY, 1997. |
[6] |
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99-R136.doi: 10.1088/0266-5611/18/6/201. |
[7] |
L. Borcea, Addendum to "Electrical impedance tomography", Inverse Problems, 19 (2002), 997-998.doi: 10.1088/0266-5611/19/4/501. |
[8] |
G. Boverman, D. Isaacson, T-J Kao, G. J. Saulnier and J. C. Newell, "Methods for Direct Image Reconstruction for EIT in Two and Three Dimensions," in "Electrical Impedance Tomography Conf.," Hanover, New Hampshire, USA, (2008). |
[9] |
R. M. Brown, Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result, J. Inverse and Ill-posed Prob., 9 (2001), 567-574. |
[10] |
R. Brown and R. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in $L^p, p>2n,$ J. Fourier Analysis Appl., 9 (2003), 1049-1056. |
[11] |
R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009-1027.doi: 10.1080/03605309708821292. |
[12] |
A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemàtica, (1980), 65-73. |
[13] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.doi: 10.1137/S0036144598333613. |
[14] |
K-S Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Imaging, (1989), 918-924. |
[15] |
R. D. Cook, G. J. Saulnier and J. C. Goble, A phase sensitive voltmeter for a high-speed, high-precision electrical impedance tomograph, in "Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Soc.," (1991), 22-23.doi: 10.1109/IEMBS.1991.683822. |
[16] |
H. Cornean, K. Knudsen and S. Siltanen, Towards a d-bar reconstruction method for three-dimensional EIT, Journal of Inverse and Ill-Posed Problems, 14 (2006), 111-134.doi: 10.1515/156939406777571102. |
[17] |
R. Courant and D. Hilbert, "Methods of Mathematical Physics," Interscience Publishers, Vol. II 1962. |
[18] |
E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511566158. |
[19] |
B. Gebauer and N. Hyvönen, Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Probl. Imaging, 2 (2008), 355-372.doi: 10.3934/ipi.2008.2.355. |
[20] |
E. Gersing, B. Hoffman, and M. Osypka, Influence of changing peripheral geometry on electrical impedance tomography measurements, Medical & Biological Engineering & Computing, 34 (1996), 359-361.doi: 10.1007/BF02520005. |
[21] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 224, 1989. |
[22] |
J. Goble, M. Cheney and D. Isaacson, Electrical impedance tomography in three dimensions Appl. Comput. Electromagn. Soc. J., 7 (1992), 128-147. |
[23] |
A. Greenleaf, M. Lassas and G. Uhlmann, The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352.doi: 10.1002/cpa.10061. |
[24] |
M. Hanke and B. Schappel, The factorization method for electrical impedance tomography in the half-space, SIAM J. Appl. Math., 68 (2008), 907-924doi: 10.1137/06067064X. |
[25] |
T. Ide, H. Isozaki, S. Nakata and S. Siltanen, Local detection of three-dimensional inclusions in electrical impedance tomography, Inverse Problems, 26 (2010), 35001-35017.doi: 10.1088/0266-5611/26/3/035001. |
[26] |
D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography, Physiol Meas., 27 (2006), 43-50. |
[27] |
H. Kang and K. Yun, Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal., 34 (2003), 719-735.doi: 10.1137/S0036141001395042. |
[28] |
R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37 (1984), 289-298.doi: 10.1002/cpa.3160370302. |
[29] |
R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior results, Commun. Pure Appl. Math., 38 (1985), 643-667.doi: 10.1002/cpa.3160380513. |
[30] |
V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen and J. P. Kaipio, Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns, Physiological Measurement, 18 (1997), 289-303.doi: 10.1088/0967-3334/18/4/003. |
[31] |
P. Metherall, D. C. Barber and R. H. Smallwood, Three dimensional electrical impedance tomography, in "IX Int. Conf. Electrical Bio-Impedance," Heidelberg, Germany, (1995), 510-511. |
[32] |
P. Metherall, D. C. Barber, R. H. Smallwood and B. H. Brown, Three-dimensional electrical impedance tomography, Nature, 380 (1996), 509-512.doi: 10.1038/380509a0. |
[33] |
P. Metherall, R. H. Smallwood and D. C. Barber, Three dimensional electrical impedance tomography of the human thorax, in "18th Int. Conf. IEEE Eng. Med. Biol. Society," (1996). |
[34] |
J. P. Morucci, M. Granie, M. Lei, M. Chabert and P. M. Marsili, 3D reconstruction in electrical impedance imaging using a direct sensitivity matrix approach, Physiol. Meas., 16 (1995), A123-A128.doi: 10.1088/0967-3334/16/3A/012. |
[35] |
A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math., 128 (1988), 531-576.doi: 10.2307/1971435. |
[36] |
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96.doi: 10.2307/2118653. |
[37] |
G. Nakamura and K. Tanuma, Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map, Inverse Problems, 17 (2001), 405-419.doi: 10.1088/0266-5611/17/3/303. |
[38] |
G. Nakamura and K. Tanuma, Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map, Comm. Korean Math. Soc., 16 (2001), 415-425. |
[39] |
G. Nakamura and K. Tanuma, Formulas for reconstructing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map, in "Recent Development in Theories & Numerics, Int. Conf. on Inverse Problems" (eds. Yiu-Chung Hon, Masahiro Yamamoto, Jin Cheng and June-Yub Lee), World Scientific, (2003), 192-201. |
[40] |
G. Nakamura, K. Tanuma, S. Siltanen and S. Wang, Numerical recovery of conductivity at the boundary from the localized Dirichlet to Neumann map, Computing, 75 (2004), 197-213.doi: 10.1007/s00607-004-0095-x. |
[41] |
J. C. Newell, R. S. Blue, D. Isaacson, G. J. Saulnier and A. S. Ross, Phasic three-dimensional impedance imaging of cardiac activity, Physiol. Meas., 23 (2002), 203-209.doi: 10.1088/0967-3334/23/1/321. |
[42] |
L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz conductivities, Rev. Mat. Iberoam., 19 (2003), 57-72. |
[43] |
R. L. Robertson, Boundary identifiability of residual stress via the Dirichlet to Neumann map, Inverse Problems, 13 (1997), 1107-1119.doi: 10.1088/0266-5611/13/4/015. |
[44] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[45] |
G. Strang and G. Fix, "An Analysis of The Finite Element Method," Prentice Hall, 1973. |
[46] |
J. Sylvester, A convergent layer stripping algorithm for the radially symmetric impedance tomography problem, Comm. PDE, 17 (1992), 1955-1994.doi: 10.1080/03605309208820910. |
[47] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291. |
[48] |
J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary - continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221.doi: 10.1002/cpa.3160410205. |
[49] |
P. J. Vauhkonen, "Image Reconstruction in Three-Dimensional Electrical Impedance Tomography," Ph.D thesis, University of Kuopio, 2004. |
[50] |
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Static three-dimensional electrical impedance tomography, Ann. New York Acad. Sci., 873 (1999), 472-481.doi: 10.1111/j.1749-6632.1999.tb09496.x. |
[51] |
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160.doi: 10.1109/10.784147. |
[52] |
A. Wexler, Electrical impedance imaging in two and three dimensions, Clin. Phys. Physiol. Meas., Suppl A, 9 (1988), 29-33. |