-
Previous Article
Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements
- IPI Home
- This Issue
-
Next Article
Identification of a real constant in linear evolution equations in Hilbert spaces
Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice
1. | Graduate school of pure and applied sciences, University of Tsukuba, Tennnoudai 1-1-1, Tsukuba, Ibaraki, 305-0821, Japan |
References:
[1] |
K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().
|
[2] |
L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 30 pp.
doi: 10.1088/0266-5611/26/4/045010. |
[3] |
L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 36 pp.
doi: 10.1088/0266-5611/26/10/105009. |
[4] |
F. R. Chung, "Spectral Graph Theory," CBMS Regional Conference Series in Mathematics, 92, AMS, Providence, RI, 1997. |
[5] |
E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., 51 (1991), 1011-1029.
doi: 10.1137/0151051. |
[6] |
E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781-814. |
[7] |
R. Diestel, "Graph Theory," 2nd edition, Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000. |
[8] |
H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().
|
[9] |
H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753. |
[10] |
R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93-152, 255. |
[11] |
A. I. Nachman, Reconstruction from boundary measurements, Ann. Math. (2), 128 (1988), 531-576.
doi: 10.2307/1971435. |
[12] |
A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem, Commun. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[13] |
R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, 2000. Available from: http://www.math.washington.edu/~reu//papers/2000/oberlin/oberlin_schrodinger.pdf. |
[14] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), 125 (1987), 153-169.
doi: 10.2307/1971291. |
show all references
References:
[1] |
K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().
|
[2] |
L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 30 pp.
doi: 10.1088/0266-5611/26/4/045010. |
[3] |
L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 36 pp.
doi: 10.1088/0266-5611/26/10/105009. |
[4] |
F. R. Chung, "Spectral Graph Theory," CBMS Regional Conference Series in Mathematics, 92, AMS, Providence, RI, 1997. |
[5] |
E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., 51 (1991), 1011-1029.
doi: 10.1137/0151051. |
[6] |
E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781-814. |
[7] |
R. Diestel, "Graph Theory," 2nd edition, Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000. |
[8] |
H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().
|
[9] |
H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753. |
[10] |
R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93-152, 255. |
[11] |
A. I. Nachman, Reconstruction from boundary measurements, Ann. Math. (2), 128 (1988), 531-576.
doi: 10.2307/1971435. |
[12] |
A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem, Commun. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[13] |
R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, 2000. Available from: http://www.math.washington.edu/~reu//papers/2000/oberlin/oberlin_schrodinger.pdf. |
[14] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), 125 (1987), 153-169.
doi: 10.2307/1971291. |
[1] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[2] |
Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139 |
[3] |
Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158 |
[4] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[5] |
Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631 |
[6] |
Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745 |
[7] |
Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043 |
[8] |
Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 |
[9] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054 |
[10] |
Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001 |
[11] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[12] |
Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems and Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59 |
[13] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[14] |
Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221 |
[15] |
Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861 |
[16] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[17] |
Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313 |
[18] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[19] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[20] |
Hideo Takaoka. Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6351-6378. doi: 10.3934/dcds.2020283 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]