
Previous Article
Euclidean skeletons using closest points
 IPI Home
 This Issue

Next Article
Global uniqueness for an inverse problem for the magnetic Schrödinger operator
An algorithm for recovering unknown projection orientations and shifts in 3D tomography
1.  Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland 
2.  Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsinki, 
References:
[1] 
S. Basu and Y. Bresler, Uniqueness of tomography with unknown view angles, IEEE Transactions on Image Processing, 9 (2000), 10941106. doi: 10.1109/83.846251. Google Scholar 
[2] 
S. Basu and Y. Bresler, Feasibility of tomography with unknown view angles, IEEE Transactions on Image Processing, 9 (2000), 11071122. doi: 10.1109/83.846252. Google Scholar 
[3] 
S. Basu and Y. Bresler, The stability of nonlinear least squares problems and the CramérRao Bound, IEEE Transactions on Signal Processing, 48 (2000), 34263436. doi: 10.1109/78.887032. Google Scholar 
[4] 
D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra," Undergraduate Texts in Mathematics, 2nd edition, SpringerVerlag, New York, 1997. Google Scholar 
[5] 
D. Cox, J. Little and D. O'Shea, "Using Algebraic Geometry," Graduate Texts in Mathematics, 1st edition, SpringerVerlag, New York, 1998. Google Scholar 
[6] 
D. N. P. Doan, K. C. Lee , P. Laurinmäki, S. Butcher, SM. Wong and T. Dokland, Threedimensional reconstruction of hibiscus chlorotic ringspot virus, Journal of Structural Biology, 144 (2003), 253261. doi: 10.1016/j.jsb.2003.10.001. Google Scholar 
[7] 
P. C. Doerschuk and J. E. Johnson, Ab initio reconstruction and experimental design for cryo electron microscopy, IEEE Transactions on Information Theory, 46 (2000), 17141729. doi: 10.1109/18.857786. Google Scholar 
[8] 
A. V. Fiacco, "Introduction to Sensitivity and Stability Analysis in Nonlinear Programming," Academic, New York, 1983. Google Scholar 
[9] 
J. Frank, "Threedimensional Electron Microscopy of Macromolecular Assemblies," CA: Academic, San Diego, 1996. Google Scholar 
[10] 
M. S. Gelfand and A. B. Goncharov, Spational rotational alignment of identical particles given their projections: Theory and practice, in "Mathematical Problems of Tomography," volume 81 of Translations of Mathematical Monographs (eds. I. M. Gelfand and S. G. Gindikin), American Mathematical Society, Providence, Rhode Island, (1990), 97122. (Translated from the Russian by S. Gelfand) Google Scholar 
[11] 
M. Giaquinta and S. Hildebrandt, "Calculus of Variations I," A Series of Comprehensive Studies in Mathematics, SpringerVerlag, Berlin, 1996. Google Scholar 
[12] 
A. B. Goncharov, Integral geometry and threedimensional reconstruction of randomly oriented identical particles from their electron microphotos, Acta Applicandae Mathematicae, 11 (1988), 199211. doi: 10.1007/BF00140118. Google Scholar 
[13] 
A. B. Goncharov, Threedimensional reconstruction of arbitrarily arranged identical particles given their projections, in "Mathematical Problems of Tomography," volume 81 of Translations of Mathematical Monographs (eds. I. M. Gelfand and S. G. Gindikin), American Mathematical Society, Providence, Rhode Island, (1990), 6796. (Translated from the Russian by S. Gelfand) Google Scholar 
[14] 
M. Hedley and H. Yan, Motion artifact suppression: A review of postprocessing techniques, Magnetic Resonance Imaging, 10 (1992), 627635. doi: 10.1016/0730725X(92)90014Q. Google Scholar 
[15] 
S. G. Krantz and H. R. Parks, "A Primer of Real Analytic Functions," Birkhäuser, Basel, 1992. Google Scholar 
[16] 
L. Lamberg, Unique recovery of unknown projection orientations in threedimensional tomography, Inverse Problems and Imaging, 2 (2008), 547575. doi: 10.3934/ipi.2008.2.547. Google Scholar 
[17] 
L. Lamberg and L. Ylinen, Twodimensional tomography with unknown view angles, Inverse Problems and Imaging, 1 (2007), 623642. Google Scholar 
[18] 
P. D. Lauren and N. Nandhakumar, Estimating the viewing parameters of random, noisy projections of asymmetric objects for tomographic reconstruction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (1997), 417430. doi: 10.1109/34.589202. Google Scholar 
[19] 
E. Lehmann, "Theory of Point Estimation," Springer, New York, 1998. Google Scholar 
[20] 
S. P. Mallick, S. Agarwal, D. J. Kriegman, S. J. Belongie, B. Carragher and C. S. Potter, Structure and View Estimation for Tomographic Reconstruction: A Bayesian Approach, Computer Vision and Pattern Recognition, 2 (2006), 22532260. Google Scholar 
[21] 
F. Natterer, "The Mathematics of Computerized Tomography," John Wiley & Sons Inc, Stuttgart, 1986. Google Scholar 
[22] 
V. M. Panaretos, On random tomography with unobservable projection angles,, Submitted to the Annals of Statistic., (). Google Scholar 
[23] 
D. B. Salzman, A method of general moments for orienting 2D projections of unknown 3D objects, Computer Vision, Graphics, and Image Processing, 50 (1990), 129156. doi: 10.1016/0734189X(90)90038W. Google Scholar 
[24] 
I. R. Shafarevich, "Basic Algebraic Geometry," SpringerVerlag, Berlin, 1974. (Translated from the Russian by K. A. Hirsch) Google Scholar 
[25] 
D. C. Solmon, The Xray transform, Journal of Mathematical Analysis and Applications, 56 (1976), 6183. doi: 10.1016/0022247X(76)900081. Google Scholar 
[26] 
M. Van Heel, Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction, Ultramicroscopy, 21 (1987), 111123. doi: 10.1016/03043991(87)900787. Google Scholar 
[27] 
H. L. Van Trees, "Detection, Estimation, and Modulation Theory, Part 1," John Wiley, New York, 1968. Google Scholar 
[28] 
G. Wahba, "Spline Models for Observational Data," Society for Industrial and Applied Mathematics, Philadelphia, 1990. Google Scholar 
show all references
References:
[1] 
S. Basu and Y. Bresler, Uniqueness of tomography with unknown view angles, IEEE Transactions on Image Processing, 9 (2000), 10941106. doi: 10.1109/83.846251. Google Scholar 
[2] 
S. Basu and Y. Bresler, Feasibility of tomography with unknown view angles, IEEE Transactions on Image Processing, 9 (2000), 11071122. doi: 10.1109/83.846252. Google Scholar 
[3] 
S. Basu and Y. Bresler, The stability of nonlinear least squares problems and the CramérRao Bound, IEEE Transactions on Signal Processing, 48 (2000), 34263436. doi: 10.1109/78.887032. Google Scholar 
[4] 
D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra," Undergraduate Texts in Mathematics, 2nd edition, SpringerVerlag, New York, 1997. Google Scholar 
[5] 
D. Cox, J. Little and D. O'Shea, "Using Algebraic Geometry," Graduate Texts in Mathematics, 1st edition, SpringerVerlag, New York, 1998. Google Scholar 
[6] 
D. N. P. Doan, K. C. Lee , P. Laurinmäki, S. Butcher, SM. Wong and T. Dokland, Threedimensional reconstruction of hibiscus chlorotic ringspot virus, Journal of Structural Biology, 144 (2003), 253261. doi: 10.1016/j.jsb.2003.10.001. Google Scholar 
[7] 
P. C. Doerschuk and J. E. Johnson, Ab initio reconstruction and experimental design for cryo electron microscopy, IEEE Transactions on Information Theory, 46 (2000), 17141729. doi: 10.1109/18.857786. Google Scholar 
[8] 
A. V. Fiacco, "Introduction to Sensitivity and Stability Analysis in Nonlinear Programming," Academic, New York, 1983. Google Scholar 
[9] 
J. Frank, "Threedimensional Electron Microscopy of Macromolecular Assemblies," CA: Academic, San Diego, 1996. Google Scholar 
[10] 
M. S. Gelfand and A. B. Goncharov, Spational rotational alignment of identical particles given their projections: Theory and practice, in "Mathematical Problems of Tomography," volume 81 of Translations of Mathematical Monographs (eds. I. M. Gelfand and S. G. Gindikin), American Mathematical Society, Providence, Rhode Island, (1990), 97122. (Translated from the Russian by S. Gelfand) Google Scholar 
[11] 
M. Giaquinta and S. Hildebrandt, "Calculus of Variations I," A Series of Comprehensive Studies in Mathematics, SpringerVerlag, Berlin, 1996. Google Scholar 
[12] 
A. B. Goncharov, Integral geometry and threedimensional reconstruction of randomly oriented identical particles from their electron microphotos, Acta Applicandae Mathematicae, 11 (1988), 199211. doi: 10.1007/BF00140118. Google Scholar 
[13] 
A. B. Goncharov, Threedimensional reconstruction of arbitrarily arranged identical particles given their projections, in "Mathematical Problems of Tomography," volume 81 of Translations of Mathematical Monographs (eds. I. M. Gelfand and S. G. Gindikin), American Mathematical Society, Providence, Rhode Island, (1990), 6796. (Translated from the Russian by S. Gelfand) Google Scholar 
[14] 
M. Hedley and H. Yan, Motion artifact suppression: A review of postprocessing techniques, Magnetic Resonance Imaging, 10 (1992), 627635. doi: 10.1016/0730725X(92)90014Q. Google Scholar 
[15] 
S. G. Krantz and H. R. Parks, "A Primer of Real Analytic Functions," Birkhäuser, Basel, 1992. Google Scholar 
[16] 
L. Lamberg, Unique recovery of unknown projection orientations in threedimensional tomography, Inverse Problems and Imaging, 2 (2008), 547575. doi: 10.3934/ipi.2008.2.547. Google Scholar 
[17] 
L. Lamberg and L. Ylinen, Twodimensional tomography with unknown view angles, Inverse Problems and Imaging, 1 (2007), 623642. Google Scholar 
[18] 
P. D. Lauren and N. Nandhakumar, Estimating the viewing parameters of random, noisy projections of asymmetric objects for tomographic reconstruction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (1997), 417430. doi: 10.1109/34.589202. Google Scholar 
[19] 
E. Lehmann, "Theory of Point Estimation," Springer, New York, 1998. Google Scholar 
[20] 
S. P. Mallick, S. Agarwal, D. J. Kriegman, S. J. Belongie, B. Carragher and C. S. Potter, Structure and View Estimation for Tomographic Reconstruction: A Bayesian Approach, Computer Vision and Pattern Recognition, 2 (2006), 22532260. Google Scholar 
[21] 
F. Natterer, "The Mathematics of Computerized Tomography," John Wiley & Sons Inc, Stuttgart, 1986. Google Scholar 
[22] 
V. M. Panaretos, On random tomography with unobservable projection angles,, Submitted to the Annals of Statistic., (). Google Scholar 
[23] 
D. B. Salzman, A method of general moments for orienting 2D projections of unknown 3D objects, Computer Vision, Graphics, and Image Processing, 50 (1990), 129156. doi: 10.1016/0734189X(90)90038W. Google Scholar 
[24] 
I. R. Shafarevich, "Basic Algebraic Geometry," SpringerVerlag, Berlin, 1974. (Translated from the Russian by K. A. Hirsch) Google Scholar 
[25] 
D. C. Solmon, The Xray transform, Journal of Mathematical Analysis and Applications, 56 (1976), 6183. doi: 10.1016/0022247X(76)900081. Google Scholar 
[26] 
M. Van Heel, Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction, Ultramicroscopy, 21 (1987), 111123. doi: 10.1016/03043991(87)900787. Google Scholar 
[27] 
H. L. Van Trees, "Detection, Estimation, and Modulation Theory, Part 1," John Wiley, New York, 1968. Google Scholar 
[28] 
G. Wahba, "Spline Models for Observational Data," Society for Industrial and Applied Mathematics, Philadelphia, 1990. Google Scholar 
[1] 
Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 487515. doi: 10.3934/dcds.2001.7.487 
[2] 
Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 12451262. doi: 10.3934/ipi.2018052 
[3] 
Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471486. doi: 10.3934/jimo.2016.12.471 
[4] 
Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with timedelays. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 24732489. doi: 10.3934/dcdsb.2016056 
[5] 
Anugu Sumith Reddy, Amit Apte. Stability of nonlinear filter for deterministic dynamics. Foundations of Data Science, 2021, 3 (3) : 647675. doi: 10.3934/fods.2021025 
[6] 
Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163173. doi: 10.3934/proc.2011.2011.163 
[7] 
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discretetime state observations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 209226. doi: 10.3934/dcdsb.2017011 
[8] 
Nadia Loy, Luigi Preziosi. Stability of a nonlocal kinetic model for cell migration with density dependent orientation bias. Kinetic & Related Models, 2020, 13 (5) : 10071027. doi: 10.3934/krm.2020035 
[9] 
Haigang Li, JennNan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multilayer structure. Inverse Problems & Imaging, 2022, 16 (1) : 229249. doi: 10.3934/ipi.2021048 
[10] 
Roland Pulch. Stability preservation in Galerkintype projectionbased model order reduction. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 2344. doi: 10.3934/naco.2019003 
[11] 
Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equationfree projection to a slow manifold. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 27592803. doi: 10.3934/dcds.2012.32.2759 
[12] 
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems  B, 2021, 26 (12) : 61736184. doi: 10.3934/dcdsb.2021012 
[13] 
Lars Lamberg. Unique recovery of unknown projection orientations in threedimensional tomography. Inverse Problems & Imaging, 2008, 2 (4) : 547575. doi: 10.3934/ipi.2008.2.547 
[14] 
Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 20952113. doi: 10.3934/cpaa.2014.13.2095 
[15] 
Miljana Jovanović, Vuk Vujović. Stability of stochastic heroin model with two distributed delays. Discrete & Continuous Dynamical Systems  B, 2020, 25 (7) : 24072432. doi: 10.3934/dcdsb.2020016 
[16] 
K Najarian. On stochastic stability of dynamic neural models in presence of noise. Conference Publications, 2003, 2003 (Special) : 656663. doi: 10.3934/proc.2003.2003.656 
[17] 
Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021021 
[18] 
Fuke Wu, George Yin, Le Yi Wang. Razumikhintype theorems on moment exponential stability of functional differential equations involving twotimescale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697719. doi: 10.3934/mcrf.2015.5.697 
[19] 
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373402. doi: 10.3934/mbe.2007.4.373 
[20] 
Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 473485. doi: 10.3934/dcdsb.2018032 
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]