Advanced Search
Article Contents
Article Contents

Recovery of the heat coefficient by two measurements

Abstract Related Papers Cited by
  • We prove that it takes at most two measurements on the boundary to recover the heat coefficient of a one dimensional heat equation if its lower bound is known. Otherwise a finite number of measurements is needed. We also provide a new constructive algorithm for its recovery. Using asymptotics of eigenfunctions of the associated Sturm-Liouville problem we show that a hot spot initial condition generates all, except maybe a finite number of boundary spectral data. Then a counting argument based on the method of false position helps search for the number of missing boundary spectral data which is then unraveled by a finite number of measurements. Finally, we show how the boundary spectral data is converted into spectral data, and the well known Gelfand-Levitan-Gasymov inverse spectral theory of Sturm-Liouville operators yields the reconstruction of the heat coefficient uniquely.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 34K29.


    \begin{equation} \\ \end{equation}
  • [1]

    A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081.doi: 10.1088/0266-5611/22/6/010.


    S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995.


    S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322.doi: 10.1515/jiip.1997.5.4.309.


    S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440.


    S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330.doi: 10.1515/156939405775201718.


    M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890.


    A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423.doi: 10.1088/0266-5611/15/6/302.


    A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921.doi: 10.1090/S0002-9939-2010-10297-6.


    A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163.doi: 10.1080/01630560903574993.


    R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88.


    V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.doi: 10.1007/BF00392201.


    V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006.


    A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.


    B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987.


    B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63.


    B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975.


    V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973.


    J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72.doi: 10.1137/1028003.


    J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000.doi: 10.1007/978-3-7091-6296-5_10.


    B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50.doi: 10.1093/imamat/52.1.31.


    B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504.doi: 10.1137/0523023.


    Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824.doi: 10.1109/29.56027.


    Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004.


    T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003.doi: 10.1002/0471722839.

  • 加载中

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint