November  2011, 5(4): 859-877. doi: 10.3934/ipi.2011.5.859

Reconstructions from boundary measurements on admissible manifolds

1. 

Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637-1514, United States

2. 

Department of Mathematics and Statistics, University of Helsinki and University of Jyväskylä, PO Box 68, 00014 Helsinki, Finland

3. 

Department of Mathematics, University of Washington and, Department of Mathematics, University of California, Irvine, CA 92697-3875, United States

Received  November 2010 Revised  August 2011 Published  November 2011

We prove that a potential $q$ can be reconstructed from the Dirichlet-to-Neumann map for the Schrödinger operator $-\Delta_g + q$ in a fixed admissible $3$-dimensional Riemannian manifold $(M,g)$. We also show that an admissible metric $g$ in a fixed conformal class can be constructed from the Dirichlet-to-Neumann map for $\Delta_g$. This is a constructive version of earlier uniqueness results by Dos Santos Ferreira et al. [10] on admissible manifolds, and extends the reconstruction procedure of Nachman [31] in Euclidean space. The main points are the derivation of a boundary integral equation characterizing the boundary values of complex geometrical optics solutions, and the development of associated layer potentials adapted to a cylindrical geometry.
Citation: Carlos E. Kenig, Mikko Salo, Gunther Uhlmann. Reconstructions from boundary measurements on admissible manifolds. Inverse Problems and Imaging, 2011, 5 (4) : 859-877. doi: 10.3934/ipi.2011.5.859
References:
[1]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224. doi: 10.1081/PDE-200044485.

[2]

K. Astala and L. Päivärinta, A boundary integral equation for Calderón's inverse conductivity problem,, Collect. Math., 2006 (): 127. 

[3]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[4]

T. Aubin, "Some Nonlinear Problems in Riemannian Geometry," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[5]

M. Belishev and Y. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. PDE, 17 (1992), 767-804. doi: 10.1080/03605309208820863.

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-posed Probl., 16 (2008), 19-33. doi: 10.1515/jiip.2008.002.

[7]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro, 1980), 65-73, Soc. Brasileira de Matemática, Río de Janeiro, 1980.

[8]

F. Delbary, P. C. Hansen and K. Knudsen, A direct numerical reconstruction algorithm for the 3D Calderón problem, in "Proc. International Conference on Inverse Problems," 2010, Hong Kong, Journal of Physics: Conference Series, 290 (2011), 012003. doi: 10.1088/1742-6596/290/1/012003.

[9]

D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, preprint, 2011, arXiv:1104.0232.

[10]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171. doi: 10.1007/s00222-009-0196-4.

[11]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Sov. Phys. Dokl., 10 (1966), 1033-1035.

[12]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108. doi: 10.1007/s12220-007-9007-6.

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[14]

C. Guillarmou and A. Sá Barreto, Inverse problems for Einstein manifolds, Inverse Probl. Imaging, 3 (2009), 1-15. doi: 10.3934/ipi.2009.3.1.

[15]

C. Guillarmou and L. Tzou, Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158 (2011), 83-120. doi: 10.1215/00127094-1276310.

[16]

C. Guillarmou and L. Tzou, Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., 21 (2011), 393-418. doi: 10.1007/s00039-011-0110-2.

[17]

G. M. Henkin and V. Michel, On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator, Geom. Funct. Anal., 17 (2007), 116-155. doi: 10.1007/s00039-006-0590-7.

[18]

G. M. Henkin and V. Michel, Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18 (2008), 1033-1052. doi: 10.1007/s12220-008-9035-x.

[19]

G. M. Khenkin and R. G. Novikov, The $\overline{\partial}$ -equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

[20]

G. M. Henkin and R. G. Novikov, On the reconstruction of conductivity of bordered two-dimensional surface in $\mathbbR^3$ from electrical currents measurements on its boundary, J. Geom. Anal., 21 (2011), 543-587. doi: 10.1007/s12220-010-9158-8.

[21]

G. Henkina and M. Santacesaria, On an inverse problem for anisotropic conductivity in the plane, Inverse Problems, 26 (2010), 095011, 18 pp.

[22]

G. Henkin and M. Santacesaria, Gel'fand-Calderón's inverse problem for anisotropic conductivities on bordered surfaces in $\mathbbR^3$,, IMRN (to appear), (). 

[23]

A. Katchalov and Y. Kurylëv, Incomplete spectral data and the reconstruction of a Riemannian manifold, J. Inverse Ill-Posed Probl., 1 (1993), 141-153. doi: 10.1515/jiip.1993.1.2.141.

[24]

A. Katchalov and Y. Kurylev, Multidimensional inverse problem with incomplete boundary spectral data, Comm. PDE, 23 (1998), 55-95. doi: 10.1080/03605309808821338.

[25]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[26]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419. doi: 10.1215/00127094-1272903.

[27]

M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221.

[28]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4), 34 (2001), 771-787.

[29]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804.

[30]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations," Cambridge University Press, Cambridge, 2000.

[31]

A. Nachman, Reconstructions from boundary measurements, Ann. Math. (2), 128 (1988), 531-576. doi: 10.2307/1971435.

[32]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96. doi: 10.2307/2118653.

[33]

A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390. doi: 10.1080/03605300903296322.

[34]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) - E u(x))\psi = 0$, Funct. Anal. Appl., 22 (1988), 263-272. doi: 10.1007/BF01077418.

[35]

R. G. Novikov, An effectivization of the global reconstruction in the Gel'fand-Calderón inverse problem in three dimensions, in "Imaging Microstructures," 161-184, Contemp. Math., 494, Amer. Math. Soc., Providence, RI, 2009.

[36]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[37]

M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. PDE, 31 (2006), 1639-1666. doi: 10.1080/03605300500530420.

[38]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

[39]

V. Sharafutdinov, "Integral Geometry of Tensor Fields," Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994.

[40]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169. doi: 10.2307/1971291.

[41]

M. E. Taylor, "Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials," Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000.

show all references

References:
[1]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. PDE, 30 (2005), 207-224. doi: 10.1081/PDE-200044485.

[2]

K. Astala and L. Päivärinta, A boundary integral equation for Calderón's inverse conductivity problem,, Collect. Math., 2006 (): 127. 

[3]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[4]

T. Aubin, "Some Nonlinear Problems in Riemannian Geometry," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[5]

M. Belishev and Y. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. PDE, 17 (1992), 767-804. doi: 10.1080/03605309208820863.

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-posed Probl., 16 (2008), 19-33. doi: 10.1515/jiip.2008.002.

[7]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro, 1980), 65-73, Soc. Brasileira de Matemática, Río de Janeiro, 1980.

[8]

F. Delbary, P. C. Hansen and K. Knudsen, A direct numerical reconstruction algorithm for the 3D Calderón problem, in "Proc. International Conference on Inverse Problems," 2010, Hong Kong, Journal of Physics: Conference Series, 290 (2011), 012003. doi: 10.1088/1742-6596/290/1/012003.

[9]

D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, preprint, 2011, arXiv:1104.0232.

[10]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171. doi: 10.1007/s00222-009-0196-4.

[11]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Sov. Phys. Dokl., 10 (1966), 1033-1035.

[12]

B. Frigyik, P. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108. doi: 10.1007/s12220-007-9007-6.

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[14]

C. Guillarmou and A. Sá Barreto, Inverse problems for Einstein manifolds, Inverse Probl. Imaging, 3 (2009), 1-15. doi: 10.3934/ipi.2009.3.1.

[15]

C. Guillarmou and L. Tzou, Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158 (2011), 83-120. doi: 10.1215/00127094-1276310.

[16]

C. Guillarmou and L. Tzou, Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., 21 (2011), 393-418. doi: 10.1007/s00039-011-0110-2.

[17]

G. M. Henkin and V. Michel, On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator, Geom. Funct. Anal., 17 (2007), 116-155. doi: 10.1007/s00039-006-0590-7.

[18]

G. M. Henkin and V. Michel, Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18 (2008), 1033-1052. doi: 10.1007/s12220-008-9035-x.

[19]

G. M. Khenkin and R. G. Novikov, The $\overline{\partial}$ -equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

[20]

G. M. Henkin and R. G. Novikov, On the reconstruction of conductivity of bordered two-dimensional surface in $\mathbbR^3$ from electrical currents measurements on its boundary, J. Geom. Anal., 21 (2011), 543-587. doi: 10.1007/s12220-010-9158-8.

[21]

G. Henkina and M. Santacesaria, On an inverse problem for anisotropic conductivity in the plane, Inverse Problems, 26 (2010), 095011, 18 pp.

[22]

G. Henkin and M. Santacesaria, Gel'fand-Calderón's inverse problem for anisotropic conductivities on bordered surfaces in $\mathbbR^3$,, IMRN (to appear), (). 

[23]

A. Katchalov and Y. Kurylëv, Incomplete spectral data and the reconstruction of a Riemannian manifold, J. Inverse Ill-Posed Probl., 1 (1993), 141-153. doi: 10.1515/jiip.1993.1.2.141.

[24]

A. Katchalov and Y. Kurylev, Multidimensional inverse problem with incomplete boundary spectral data, Comm. PDE, 23 (1998), 55-95. doi: 10.1080/03605309808821338.

[25]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[26]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations, Duke Math. J., 157 (2011), 369-419. doi: 10.1215/00127094-1272903.

[27]

M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221.

[28]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4), 34 (2001), 771-787.

[29]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804.

[30]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations," Cambridge University Press, Cambridge, 2000.

[31]

A. Nachman, Reconstructions from boundary measurements, Ann. Math. (2), 128 (1988), 531-576. doi: 10.2307/1971435.

[32]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96. doi: 10.2307/2118653.

[33]

A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390. doi: 10.1080/03605300903296322.

[34]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) - E u(x))\psi = 0$, Funct. Anal. Appl., 22 (1988), 263-272. doi: 10.1007/BF01077418.

[35]

R. G. Novikov, An effectivization of the global reconstruction in the Gel'fand-Calderón inverse problem in three dimensions, in "Imaging Microstructures," 161-184, Contemp. Math., 494, Amer. Math. Soc., Providence, RI, 2009.

[36]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[37]

M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. PDE, 31 (2006), 1639-1666. doi: 10.1080/03605300500530420.

[38]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.

[39]

V. Sharafutdinov, "Integral Geometry of Tensor Fields," Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994.

[40]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169. doi: 10.2307/1971291.

[41]

M. E. Taylor, "Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials," Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000.

[1]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[2]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic and Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[3]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[4]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[5]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[6]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[7]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[8]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[9]

Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems and Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038

[10]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[11]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[12]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[13]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[14]

Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008

[15]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[16]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[17]

Brahim Alouini. Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 45-72. doi: 10.3934/dcdsb.2021032

[18]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[19]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[20]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]