May  2012, 6(2): 289-313. doi: 10.3934/ipi.2012.6.289

Inverse diffusion problems with redundant internal information

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York NY, 10027

Received  June 2011 Published  May 2012

This paper concerns the reconstruction of a scalar diffusion coefficient $\sigma(x)$ from redundant functionals of the form $H_i(x)=\sigma^{2\alpha}(x)|\nabla u_i|^2(x)$ where $\alpha\in\mathbb{R}$ and $u_i$ is a solution of the elliptic problem $\nabla\cdot \sigma \nabla u_i=0$ for $1\leq i\leq I$. The case $\alpha=\frac12$ is used to model measurements obtained from modulating a domain of interest by ultrasound and finds applications in ultrasound modulated electrical impedance tomography (UMEIT), ultrasound modulated optical tomography (UMOT) as well as impedance acoustic computerized tomography (ImpACT). The case $\alpha=1$ finds applications in Magnetic Resonance Electrical Impedance Tomography (MREIT).
    We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.
Citation: François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems and Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289
References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: 10.1137/070686408.

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings, Arch. Rat. Mech. Anal., 158 (2001), 155-171. doi: 10.1007/PL00004242.

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper), in "Inside Out'' (ed. Gunther Uhlmann), Cambridge University Press, 2012.

[4]

_____, Cauchy problem and Ultrasound modulated EIT, submitted.

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Probl. Imaging, in press, 2012.

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/5/055007.

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics, Inverse Problems, 26 (2010), 085010. doi: 10.1088/0266-5611/26/8/085010.

[8]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro, (1980), 65-73.

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'' Third edition, AMS, Chelsea, 1999.

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030.

[11]

L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, Vol. 19, AMS, 1998.

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Applied Math., 69 (2009), 565-576. doi: 10.1137/080715123.

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal., 34 (2002), 511-526. doi: 10.1137/S0036141001391354.

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013.

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'' Graduate Texts in Mathematics, Vol. 176, Springer, 1997.

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'' Ph.D. thesis, Columbia University, New York, 2012.

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563. doi: 10.1088/0266-5611/23/6/017.

[18]

_____, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014.

[19]

_____, Current density impedance imaging, Contemporary Mathematics, American Mathematical Society, in press, 2012.

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'' Springer Verlag, New York, 2011.

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'' Second edition, Publish or perish, 1990.

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'' Springer, New York, 1996.

show all references

References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: 10.1137/070686408.

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings, Arch. Rat. Mech. Anal., 158 (2001), 155-171. doi: 10.1007/PL00004242.

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper), in "Inside Out'' (ed. Gunther Uhlmann), Cambridge University Press, 2012.

[4]

_____, Cauchy problem and Ultrasound modulated EIT, submitted.

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Probl. Imaging, in press, 2012.

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/5/055007.

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics, Inverse Problems, 26 (2010), 085010. doi: 10.1088/0266-5611/26/8/085010.

[8]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro, (1980), 65-73.

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'' Third edition, AMS, Chelsea, 1999.

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030.

[11]

L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, Vol. 19, AMS, 1998.

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Applied Math., 69 (2009), 565-576. doi: 10.1137/080715123.

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal., 34 (2002), 511-526. doi: 10.1137/S0036141001391354.

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013.

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'' Graduate Texts in Mathematics, Vol. 176, Springer, 1997.

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'' Ph.D. thesis, Columbia University, New York, 2012.

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563. doi: 10.1088/0266-5611/23/6/017.

[18]

_____, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014.

[19]

_____, Current density impedance imaging, Contemporary Mathematics, American Mathematical Society, in press, 2012.

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'' Springer Verlag, New York, 2011.

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'' Second edition, Publish or perish, 1990.

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'' Springer, New York, 1996.

[1]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems and Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[2]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems and Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[3]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[4]

Henrik Garde, Nuutti Hyvönen. Reconstruction of singular and degenerate inclusions in Calderón's problem. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022021

[5]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems and Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[6]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems and Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[7]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[8]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[9]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[10]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems and Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[11]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[12]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[13]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems and Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[14]

Kim Knudsen, Aksel Kaastrup Rasmussen. Direct regularized reconstruction for the three-dimensional Calderón problem. Inverse Problems and Imaging, 2022, 16 (4) : 871-894. doi: 10.3934/ipi.2022002

[15]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[16]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems and Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[17]

Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems and Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015

[18]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[19]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[20]

Sun-Sig Byun, Yumi Cho, Shuang Liang. Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3843-3855. doi: 10.3934/dcdsb.2020038

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]