August  2012, 6(3): 373-398. doi: 10.3934/ipi.2012.6.373

Transmission eigenvalues for inhomogeneous media containing obstacles

1. 

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553, United States

2. 

CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France

3. 

INRIA Saclay Ile de France/CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France

Received  November 2011 Revised  June 2012 Published  September 2012

We consider the interior transmission problem corresponding to the inverse scattering by an inhomogeneous (possibly anisotropic) media in which an impenetrable obstacle with Dirichlet boundary conditions is embedded. Our main focus is to understand the associated eigenvalue problem, more specifically to prove that the transmission eigenvalues form a discrete set and show that they exist. The presence of Dirichlet obstacle brings new difficulties to already complicated situation dealing with a non-selfadjoint eigenvalue problem. In this paper, we employ a variety of variational techniques under various assumptions on the index of refraction as well as the size of the Dirichlet obstacle.
Citation: Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373
References:
[1]

A. S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of t-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci., Ser. I, 340 (2011).

[2]

A. S. Bonnet-BenDhia, P. Ciarlet and C. Maria Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 234 (2010), 1912-1919. doi: 10.1016/j.cam.2009.08.041.

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.

[4]

F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem, SIAM J. Math. Anal., 42 (2010), 2912-2921. doi: 10.1137/100793542.

[5]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media, J. Integral Equations and Applications, 21 (2009), 203-227. doi: 10.1216/JIE-2009-21-2-203.

[6]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2010), 145-162. doi: 10.1137/090754637.

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci. Paris, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003.

[8]

F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522. doi: 10.1088/0266-5611/23/2/004.

[9]

F. Cakoni and D. Gintides, New results on transmission eigenvalues, Inverse Problems and Imaging, 4 (2010), 39-48. doi: 10.3934/ipi.2010.4.39.

[10]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[11]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2008), 475-493. doi: 10.1080/00036810802713966.

[12]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. Jour. Comp. Sci. Math, 3 (2010), 142-167.

[13]

D. Colton and R. Kress, "Inverse Acoustic and Eletromagnetic Scattering Theory," Springer, New York, 2nd edition, 1998.

[14]

D. Colton, L. Päivärinta and J.Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13.

[15]

A. Cossonniere and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715. doi: 10.1137/100813890.

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Analysis, 42 (2010), 619-651. doi: 10.1137/100793748.

[17]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, Math Research Letters, 18 (2011), 279-293.

[18]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.

[19]

A. Kirsch and N. Grinberg, The factorization method for inverse problems, in "Mathematics and its Applications," Oxford Lecture Series, 36, Oxford University Press, Oxford, 2008.

[20]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 2965-2986. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[21]

L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753. doi: 10.1137/070697525.

[22]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

show all references

References:
[1]

A. S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of t-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci., Ser. I, 340 (2011).

[2]

A. S. Bonnet-BenDhia, P. Ciarlet and C. Maria Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 234 (2010), 1912-1919. doi: 10.1016/j.cam.2009.08.041.

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.

[4]

F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem, SIAM J. Math. Anal., 42 (2010), 2912-2921. doi: 10.1137/100793542.

[5]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media, J. Integral Equations and Applications, 21 (2009), 203-227. doi: 10.1216/JIE-2009-21-2-203.

[6]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2010), 145-162. doi: 10.1137/090754637.

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci. Paris, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003.

[8]

F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522. doi: 10.1088/0266-5611/23/2/004.

[9]

F. Cakoni and D. Gintides, New results on transmission eigenvalues, Inverse Problems and Imaging, 4 (2010), 39-48. doi: 10.3934/ipi.2010.4.39.

[10]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[11]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2008), 475-493. doi: 10.1080/00036810802713966.

[12]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. Jour. Comp. Sci. Math, 3 (2010), 142-167.

[13]

D. Colton and R. Kress, "Inverse Acoustic and Eletromagnetic Scattering Theory," Springer, New York, 2nd edition, 1998.

[14]

D. Colton, L. Päivärinta and J.Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13.

[15]

A. Cossonniere and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715. doi: 10.1137/100813890.

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Analysis, 42 (2010), 619-651. doi: 10.1137/100793748.

[17]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, Math Research Letters, 18 (2011), 279-293.

[18]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.

[19]

A. Kirsch and N. Grinberg, The factorization method for inverse problems, in "Mathematics and its Applications," Oxford Lecture Series, 36, Oxford University Press, Oxford, 2008.

[20]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 2965-2986. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[21]

L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753. doi: 10.1137/070697525.

[22]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

[1]

Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068

[2]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[3]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems and Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[4]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[5]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[6]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[7]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[8]

Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems and Imaging, 2022, 16 (4) : 739-751. doi: 10.3934/ipi.2021073

[9]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems and Imaging, 2021, 15 (5) : 999-1014. doi: 10.3934/ipi.2021025

[10]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems and Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[11]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[12]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[13]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[14]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[15]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[16]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[17]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems and Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[18]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems and Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[19]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[20]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (12)

[Back to Top]