\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Transmission eigenvalues for inhomogeneous media containing obstacles

Abstract Related Papers Cited by
  • We consider the interior transmission problem corresponding to the inverse scattering by an inhomogeneous (possibly anisotropic) media in which an impenetrable obstacle with Dirichlet boundary conditions is embedded. Our main focus is to understand the associated eigenvalue problem, more specifically to prove that the transmission eigenvalues form a discrete set and show that they exist. The presence of Dirichlet obstacle brings new difficulties to already complicated situation dealing with a non-selfadjoint eigenvalue problem. In this paper, we employ a variety of variational techniques under various assumptions on the index of refraction as well as the size of the Dirichlet obstacle.
    Mathematics Subject Classification: Primary: 35R30, 35Q60, 35J40, 78A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of t-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci., Ser. I, 340 (2011).

    [2]

    A. S. Bonnet-BenDhia, P. Ciarlet and C. Maria Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 234 (2010), 1912-1919.doi: 10.1016/j.cam.2009.08.041.

    [3]

    F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.

    [4]

    F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem, SIAM J. Math. Anal., 42 (2010), 2912-2921.doi: 10.1137/100793542.

    [5]

    F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media, J. Integral Equations and Applications, 21 (2009), 203-227.doi: 10.1216/JIE-2009-21-2-203.

    [6]

    F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2010), 145-162.doi: 10.1137/090754637.

    [7]

    F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci. Paris, 348 (2010), 379-383.doi: 10.1016/j.crma.2010.02.003.

    [8]

    F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.doi: 10.1088/0266-5611/23/2/004.

    [9]

    F. Cakoni and D. Gintides, New results on transmission eigenvalues, Inverse Problems and Imaging, 4 (2010), 39-48.doi: 10.3934/ipi.2010.4.39.

    [10]

    F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.doi: 10.1137/090769338.

    [11]

    F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2008), 475-493.doi: 10.1080/00036810802713966.

    [12]

    F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. Jour. Comp. Sci. Math, 3 (2010), 142-167.

    [13]

    D. Colton and R. Kress, "Inverse Acoustic and Eletromagnetic Scattering Theory," Springer, New York, 2nd edition, 1998.

    [14]

    D. Colton, L. Päivärinta and J.Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.doi: 10.3934/ipi.2007.1.13.

    [15]

    A. Cossonniere and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.doi: 10.1137/100813890.

    [16]

    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, SIAM J. Math. Analysis, 42 (2010), 619-651.doi: 10.1137/100793748.

    [17]

    M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients, Math Research Letters, 18 (2011), 279-293.

    [18]

    A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.

    [19]

    A. Kirsch and N. Grinberg, The factorization method for inverse problems, in "Mathematics and its Applications," Oxford Lecture Series, 36, Oxford University Press, Oxford, 2008.

    [20]

    A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 2965-2986.doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

    [21]

    L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.doi: 10.1137/070697525.

    [22]

    J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.doi: 10.1137/110836420.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return