November  2012, 6(4): 565-598. doi: 10.3934/ipi.2012.6.565

Some proximal methods for Poisson intensity CBCT and PET

1. 

Aix-Marseille Univ, LATP, UMR 7353, F-13453 Marseille, France, France

2. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France

3. 

Aix-Marseille Univ, CPPM, UMR 7346, F-13288 Marseille, France

Received  November 2011 Revised  April 2012 Published  November 2012

Cone-Beam Computerized Tomography (CBCT) and Positron Emission Tomography (PET) are two complementary medical imaging modalities providing respectively anatomic and metabolic information on a patient. In the context of public health, one must address the problem of dose reduction of the potentially harmful quantities related to each exam protocol : X-rays for CBCT and radiotracer for PET. Two demonstrators based on a technological breakthrough (acquisition devices work in photon-counting mode) have been developed. It turns out that in this low-dose context, i.e. for low intensity signals acquired by photon counting devices, noise should not be approximated anymore by a Gaussian distribution, but is following a Poisson distribution. We investigate in this paper the two related tomographic reconstruction problems. We formulate separately the CBCT and the PET problems in two general frameworks that encompass the physics of the acquisition devices and the specific discretization of the object to reconstruct. We propose various fast numerical schemes based on proximal methods to compute the solution of each problem. In particular, we show that primal-dual approaches are well suited in the PET case when considering non differentiable regularizations such as Total Variation. Experiments on numerical simulations and real data are in favor of the proposed algorithms when compared with well-established methods.
Citation: Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565
References:
[1]

IEEE Trans. Med. Imag., 22 (2003), 613-626. Google Scholar

[2]

Europ. J. of Nucl. Med. and Molec. Im., 24 (1998), 258-265. Google Scholar

[3]

Biometrika, 35 (1948), 246-254. Google Scholar

[4]

IEEE TIP, 18 (2009), 2419-2434.  Google Scholar

[5]

SIAM J. on Imag. Sci., 2 (2009), 183-202.  Google Scholar

[6]

Inverse Problems, 26 (2010), 105004, 20 pp.  Google Scholar

[7]

Inverse Problems, 27 (2011), 095001, 26 pp.  Google Scholar

[8]

Numerical Mathematics: Theory, Methods, and Applications, 2 (2009), 485-508.  Google Scholar

[9]

Physics in Medicine and Biology, 54 (2009), 1773-1789. Google Scholar

[10]

JMIV, 20 (2004), 89-97.  Google Scholar

[11]

JMIV, 40 (2011), 120-145.  Google Scholar

[12]

Mathematical Programming, 64 (1994), 81-101.  Google Scholar

[13]

Multi. Model. and Simu., 4 (2005), 1168-1200.  Google Scholar

[14]

Com. P. & A. Math., 57 (2004), 1413-1457.  Google Scholar

[15]

J. of the Roy. Stat. Soc. Ser. B, 39 (1977), 1-38.  Google Scholar

[16]

Phys. Med. Biol., 55 (2010), 2523-2539. Google Scholar

[17]

IEEE TIP, 18 (2009), 310-321.  Google Scholar

[18]

IEEE TMI, 18 (1999), 801-814. Google Scholar

[19]

J. Opt. Soc. Am. A., 1 (1984), 612-619. Google Scholar

[20]

IEEE Transactions on Image Processing, 19 (2010), 3133-3145.  Google Scholar

[21]

Colloquium Mathematicum, 3 (1955), 138-146.  Google Scholar

[22]

Appl. Opt., 24 (1985), 4028-4039. Google Scholar

[23]

IEEE Trans. Image Process., 21 (2010), 1084-1096.  Google Scholar

[24]

Pure and Applied Mathematics, 113, Academic Press, Orlando, FL, 1984.  Google Scholar

[25]

Opt. Express, 17 (2009), 10010-10018. Google Scholar

[26]

IEEE Trans. Med. Imag., 13 (1994), 601-609. Google Scholar

[27]

Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981.  Google Scholar

[28]

Bulletin Soc. Math. France, 93 (1965), 273-299.  Google Scholar

[29]

Journal of Instrumentation, 4 (2009), P07016. Google Scholar

[30]

J. Comput. Assist. Tomo., 8 (1984), 306-316. Google Scholar

[31]

in "Second AMI Meeting," Madrid, Spain, Sept., 2003. Google Scholar

[32]

Nuclear Science, IEEE Transactions on, 53 (2006), 25-29. Google Scholar

[33]

Optimization, 87, Kluwer Ac. Pub., Boston, MA, 2004.  Google Scholar

[34]

Math. Progr., 103 (2005), 127-152.  Google Scholar

[35]

Ecore discussion paper, 2007. Google Scholar

[36]

Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE, Oct. 24 2009-Nov. 1 2009, 3311-3314. Google Scholar

[37]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571 (2007), 321-324; Proceedings of the 1st International Conference on Molecular Imaging Technology - EuroMedIm, 2006. Google Scholar

[38]

IEEE TMI, 14 (1995), 132-137. Google Scholar

[39]

IEEE TIP, 20 (2011), 2450-2462.  Google Scholar

[40]

in "IEEE Med. Im. Conf.," Knoxville, TN, 2010. Google Scholar

[41]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571 (2007), 207-210; Proceedings of the 1st International Conference on Molecular Imaging Technology - EuroMedIm, 2006. Google Scholar

[42]

Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[43]

IEEE TMI, 1 (1982), 113-122. Google Scholar

[44]

Phys. Med. Biol., 53 (2008), 4777-4807. Google Scholar

[45]

IEEE TIP, 13 (2004), 600-612. Google Scholar

[46]

SIAM J. on Sci. Comp., 31 (2009), 2047-2080.  Google Scholar

show all references

References:
[1]

IEEE Trans. Med. Imag., 22 (2003), 613-626. Google Scholar

[2]

Europ. J. of Nucl. Med. and Molec. Im., 24 (1998), 258-265. Google Scholar

[3]

Biometrika, 35 (1948), 246-254. Google Scholar

[4]

IEEE TIP, 18 (2009), 2419-2434.  Google Scholar

[5]

SIAM J. on Imag. Sci., 2 (2009), 183-202.  Google Scholar

[6]

Inverse Problems, 26 (2010), 105004, 20 pp.  Google Scholar

[7]

Inverse Problems, 27 (2011), 095001, 26 pp.  Google Scholar

[8]

Numerical Mathematics: Theory, Methods, and Applications, 2 (2009), 485-508.  Google Scholar

[9]

Physics in Medicine and Biology, 54 (2009), 1773-1789. Google Scholar

[10]

JMIV, 20 (2004), 89-97.  Google Scholar

[11]

JMIV, 40 (2011), 120-145.  Google Scholar

[12]

Mathematical Programming, 64 (1994), 81-101.  Google Scholar

[13]

Multi. Model. and Simu., 4 (2005), 1168-1200.  Google Scholar

[14]

Com. P. & A. Math., 57 (2004), 1413-1457.  Google Scholar

[15]

J. of the Roy. Stat. Soc. Ser. B, 39 (1977), 1-38.  Google Scholar

[16]

Phys. Med. Biol., 55 (2010), 2523-2539. Google Scholar

[17]

IEEE TIP, 18 (2009), 310-321.  Google Scholar

[18]

IEEE TMI, 18 (1999), 801-814. Google Scholar

[19]

J. Opt. Soc. Am. A., 1 (1984), 612-619. Google Scholar

[20]

IEEE Transactions on Image Processing, 19 (2010), 3133-3145.  Google Scholar

[21]

Colloquium Mathematicum, 3 (1955), 138-146.  Google Scholar

[22]

Appl. Opt., 24 (1985), 4028-4039. Google Scholar

[23]

IEEE Trans. Image Process., 21 (2010), 1084-1096.  Google Scholar

[24]

Pure and Applied Mathematics, 113, Academic Press, Orlando, FL, 1984.  Google Scholar

[25]

Opt. Express, 17 (2009), 10010-10018. Google Scholar

[26]

IEEE Trans. Med. Imag., 13 (1994), 601-609. Google Scholar

[27]

Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981.  Google Scholar

[28]

Bulletin Soc. Math. France, 93 (1965), 273-299.  Google Scholar

[29]

Journal of Instrumentation, 4 (2009), P07016. Google Scholar

[30]

J. Comput. Assist. Tomo., 8 (1984), 306-316. Google Scholar

[31]

in "Second AMI Meeting," Madrid, Spain, Sept., 2003. Google Scholar

[32]

Nuclear Science, IEEE Transactions on, 53 (2006), 25-29. Google Scholar

[33]

Optimization, 87, Kluwer Ac. Pub., Boston, MA, 2004.  Google Scholar

[34]

Math. Progr., 103 (2005), 127-152.  Google Scholar

[35]

Ecore discussion paper, 2007. Google Scholar

[36]

Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE, Oct. 24 2009-Nov. 1 2009, 3311-3314. Google Scholar

[37]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571 (2007), 321-324; Proceedings of the 1st International Conference on Molecular Imaging Technology - EuroMedIm, 2006. Google Scholar

[38]

IEEE TMI, 14 (1995), 132-137. Google Scholar

[39]

IEEE TIP, 20 (2011), 2450-2462.  Google Scholar

[40]

in "IEEE Med. Im. Conf.," Knoxville, TN, 2010. Google Scholar

[41]

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571 (2007), 207-210; Proceedings of the 1st International Conference on Molecular Imaging Technology - EuroMedIm, 2006. Google Scholar

[42]

Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[43]

IEEE TMI, 1 (1982), 113-122. Google Scholar

[44]

Phys. Med. Biol., 53 (2008), 4777-4807. Google Scholar

[45]

IEEE TIP, 13 (2004), 600-612. Google Scholar

[46]

SIAM J. on Sci. Comp., 31 (2009), 2047-2080.  Google Scholar

[1]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[2]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[3]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[4]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[5]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[6]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[7]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[8]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[9]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027

[12]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[13]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[14]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[15]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[16]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[17]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[18]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[20]

Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021070

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (116)
  • HTML views (2)
  • Cited by (16)

[Back to Top]