November  2012, 6(4): 681-695. doi: 10.3934/ipi.2012.6.681

The Factorization Method for an inverse fluid-solid interaction scattering problem

1. 

Department of Mathematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

2. 

Universidad Autonoma de Madrid, Departamento de Matemáticas, Madrid, Spain

Received  December 2011 Revised  June 2012 Published  November 2012

In this paper we justify the Factorization Method for a coupled acoustic-elastic medium. Under natural assumptions on the data we prove an explicit form of the characteristic function of the scattering medium $D$ where only the spectral data of the far field operator enter. This information is provided by the knowledge of the far field patterns for all incident plane waves. In the last section we investigate the corresponding interior transmission eigenvalue problem and prove that the eigenvalues form a discrete set.
Citation: Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral obstacle by a single far-field measurement, Proc. Am. Math. Soc., 6 (2005), 1685-1691. doi: 10.1090/S0002-9939-05-07810-X.

[2]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.

[3]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[4]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493. doi: 10.1080/00036810802713966.

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd edition, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998.

[6]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13.

[7]

G. C. Hsiao, R. E. Kleinman and G. F. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), 139-163. doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S.

[8]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172. doi: 10.3934/ipi.2009.3.155.

[9]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems," Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008.

[10]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.

[11]

C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922. doi: 10.1137/S0036139993259027.

[12]

, P. Monk,, Personal Communication, (2012). 

[13]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), 173-198. doi: 10.3934/ipi.2009.3.173.

[14]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Problems and Imaging, 5 (2011), 465-483. doi: 10.3934/ipi.2011.5.465.

[15]

D. Natroshvili, S. Kharibegashvili and Z. Tediasvili, Direct and inverse fluid-structure interaction problems, Rendiconti di Matematica, Serie VII, 20 (2000), 57-92.

[16]

L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral obstacle by a single far-field measurement, Proc. Am. Math. Soc., 6 (2005), 1685-1691. doi: 10.1090/S0002-9939-05-07810-X.

[2]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory: An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.

[3]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[4]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493. doi: 10.1080/00036810802713966.

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," 2nd edition, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998.

[6]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13.

[7]

G. C. Hsiao, R. E. Kleinman and G. F. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), 139-163. doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S.

[8]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172. doi: 10.3934/ipi.2009.3.155.

[9]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems," Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008.

[10]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.

[11]

C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904-922. doi: 10.1137/S0036139993259027.

[12]

, P. Monk,, Personal Communication, (2012). 

[13]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), 173-198. doi: 10.3934/ipi.2009.3.173.

[14]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Problems and Imaging, 5 (2011), 465-483. doi: 10.3934/ipi.2011.5.465.

[15]

D. Natroshvili, S. Kharibegashvili and Z. Tediasvili, Direct and inverse fluid-structure interaction problems, Rendiconti di Matematica, Serie VII, 20 (2000), 57-92.

[16]

L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), 738-753.

[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems and Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[3]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[4]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[5]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[8]

Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031

[9]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[10]

Yunwen Yin, Weishi Yin, Pinchao Meng, Hongyu Liu. The interior inverse scattering problem for a two-layered cavity using the Bayesian method. Inverse Problems and Imaging, 2022, 16 (4) : 673-690. doi: 10.3934/ipi.2021069

[11]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[12]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[13]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[14]

Karzan Berdawood, Abdeljalil Nachaoui, Rostam Saeed, Mourad Nachaoui, Fatima Aboud. An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 57-78. doi: 10.3934/dcdss.2021013

[15]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[16]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[17]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[18]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[19]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[20]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]