November  2013, 7(4): 1183-1214. doi: 10.3934/ipi.2013.7.1183

Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

1. 

Research Center on Mathematical Modelling (MODEMAT), Escuela Politécnica Nacional de Quito, Ladrón de Guevara E11-253, Quito, 170109,, Ecuador

2. 

Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

Received  July 2012 Revised  September 2013 Published  November 2013

We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems.
Citation: Juan Carlos De los Reyes, Carola-Bibiane Schönlieb. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization. Inverse Problems and Imaging, 2013, 7 (4) : 1183-1214. doi: 10.3934/ipi.2013.7.1183
References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229. doi: 10.1088/0266-5611/10/6/003.

[2]

A. Almansa, C. Ballester, V. Caselles and G. Haro, A TV based restoration model with local constraints, J. Sci. Comput., 34 (2008), 209-236. doi: 10.1007/s10915-007-9160-x.

[3]

G. Aubert and J.-F. Aujol, A variational approach to remove multiplicative noise, SIAM Journal on Applied Mathematics, 68 (2008), 925-946. doi: 10.1137/060671814.

[4]

G. Aubert and L. Vese, A variational method in image recovery, SIAM J. Numer. Anal., 34 (1997), 1948-1979. doi: 10.1137/S003614299529230X.

[5]

J.-F. Aujol and G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising, Journal of Mathematical Imaging and Vision, 26 (2006), 217-237. doi: 10.1007/s10851-006-7801-6.

[6]

F. Baus, M. Nikolova and G. Steidl, Smooth objectives composed of asymptotically affine data-fidelity and regularization: Bounds for the minimizers and parameter choice, Journal of Mathematical Imaging and Vision, Published Online (2013).

[7]

M. Bertalmio, V. Caselles, B. Rougé and A. Solé, TV based image restoration with local constraints, Journal of Scientific Computing, 19 (2003), 95-122. doi: 10.1023/A:1025391506181.

[8]

A. Bovik, Handbook of Image and Video Processing, Academic Press, 2000.

[9]

G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems, J. Reine Angew Math., 458 (1995), 1-18. doi: 10.1515/crll.1995.458.1.

[10]

G. Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. TMA, 15 (1990), 679-692. doi: 10.1016/0362-546X(90)90007-4.

[11]

G. Bouchitté and G. Buttazzo, Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. H. Poincaré, 10 (1993), 345-361.

[12]

J. F. Cai, R. H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Problems and Imaging, 2 (2008), 187-204. doi: 10.3934/ipi.2008.2.187.

[13]

E. Casas and L. Fernández, Distributed control of systems governed by a general class of quasilinear elliptic equations, J. Differential Equations, 104 (1993), 20-47. doi: 10.1006/jdeq.1993.1062.

[14]

A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011321.19549.88.

[15]

A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[16]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An Introduction to Total Variation for Image Analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery (ed. M. Fornasier,), Radon Series on Computational and Applied Mathematics, De Gruyter Verlag, 263-340, 2010. doi: 10.1515/9783110226157.263.

[17]

T. F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837. doi: 10.1137/040604297.

[18]

T. F. Chan and J. J. Shen, Image Processing and Analysis - Variational, PDE, Wavelet, and Stochastic Methods, SIAM, (2005). doi: 10.1137/1.9780898717877.

[19]

G. Dal Maso, An introduction to Gamma-convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[20]

J. C. De los Reyes, Optimal control of a class of variational inequalities of the second kind, SIAM Journal on Control and Optimization, 49 (2011), 1629-1658. doi: 10.1137/090764438.

[21]

J. C. De los Reyes, Optimization of mixed variational inequalities arising in flow of viscoplastic materials, Computational Optimization and Applications, 52 (2012), 757-784. doi: 10.1007/s10589-011-9435-x.

[22]

F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J., 33 (1984), 673-709. doi: 10.1512/iumj.1984.33.33036.

[23]

D. C. Dobson and C. R. Vogel, Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 34 (1997), 1779-1791. doi: 10.1137/S003614299528701X.

[24]

J. Domke, Generic methods for optimization-based modeling, in International Conference on Artificial Intelligence and Statistics, 318-326, 2012.

[25]

J. Domke, Learning graphical model parameters with approximate marginal inference, Published Online, PAMI, (2013). doi: 10.1109/TPAMI.2013.31.

[26]

V. Duval, J.-F. Aujol and Y. Gousseau, The TVL1 model: A geometric point of view, SIAM Journal on Multiscale Modeling and Simulation, 8 (2009), 154-189. doi: 10.1137/090757083.

[27]

M. Fornasier, V. Naumova and S. V. Pereverzyev, Parameter Choice Strategies for Multi-Penalty Regularization, preprint, July 2013. http://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/parameter_choice_strategies.pdf. doi: 10.1088/0266-5611/29/7/075002.

[28]

K. Frick, P. Marnitz and A. Munk, Statistical multiresolution dantzig estimation in imaging: Fundamental concepts and algorithmic framework, Electron. J. Stat., 6 (2012), 231-268. doi: 10.1214/12-EJS671.

[29]

K. Frick, P. Marnitz and A. Munk, Shape constrained regularization by statistical multiresolution for inverse problems, Inverse Problems, 28 (2012), 065006. doi: 10.1088/0266-5611/28/6/065006.

[30]

K. Frick, P. Marnitz and A. Munk, Statistical multiresolution estimation for variational imaging: With an application in poisson-biophotonics, Journal of Mathematical Imaging and Vision, 46 (2013), 370-387. doi: 10.1007/s10851-012-0368-5.

[31]

P. Getreuer, M. Tong and L. A. Vese, A variational model for the restoration of MR images corrupted by blur and Rician noise, in Advances in Visual Computing, Springer Berlin-Heidelberg-Chicago, 686-698, 2012. doi: 10.1007/978-3-642-24028-7_63.

[32]

G. Gilboa, N. Sochen and Y. Y. Zeevi, Texture preserving variational denoising using an adaptive fidelity term, in Proc. VLsM, (Vol. 3), 2003.

[33]

G. Gilboa, N. Sochen and Y. Y. Zeevi, Estimation of optimal PDE-based denoising in the SNR sense, Image Processing, IEEE Transactions on, 15 (2006), 2269-2280. doi: 10.1109/TIP.2006.875248.

[34]

M. Hintermüller, Y. Dong and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, Journal of Mathematical Imaging and Vision, 40 (2011), 82-104. doi: 10.1007/s10851-010-0248-9.

[35]

M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem,, SIAM Journal on Applied Mathematics, 64 (): 1311.  doi: 10.1137/S0036139903422784.

[36]

M. Hintermüller and A. Langer, Subspace Correction Methods for a Class of Non-Smooth and Non-Additive Convex Variational Problems in Image Processing, Accepted by SIAM J. Imaging Sciences, 2013, 34 pp. http://math.uni-graz.at/mobis/publications/SFB-Report-2012-021.pdf.

[37]

M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM Journal on Scientific Computing, 28 (2006), 1-23. doi: 10.1137/040613263.

[38]

J. M. Chung, M. Chung and D. P. O'Leary, Designing optimal spectral filters for inverse problems, SIAM Journal on Scientific Computing, 33 (2011), 3132-3152. doi: 10.1137/100812938.

[39]

T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263. doi: 10.1007/s10851-007-0652-y.

[40]

Risheng Liu, Zhouchen Lin, Wei Zhang and Zhixun Su, Learning PDEs for Image Restoration via Optimal Control, ECCV 2010. doi: 10.1007/978-3-642-15549-9_9.

[41]

K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM Journal on Imaging Sciences, 6 (2013), 938-983. doi: 10.1137/120882706.

[42]

B. Manz et al., L. F. Gladden and P. B. Warren, Flow and dispersion in porous media: Lattice-Boltzmann and NMR studies, AIChE Journal, 45 (1999), 1845-1854.

[43]

M. D. Mantle et al., A. J. Sederman and L. F. Gladden, Single- and two-phase flow in fixed-bed reactors: MRI flow visualisation and lattice-Boltzmann simulations, Chemical Engineering Science, 56 (2001), 523-529.

[44]

V. A. Morozov, Regularization Methods for Ill-posed Problems, CRC Press, Boca Raton, 1993.

[45]

M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 99-120. doi: 10.1023/B:JMIV.0000011920.58935.9c.

[46]

G. Peyré and J. Fadili, Learning analysis sparsity priors, Proc. of Sampta'11, (2011).

[47]

A. Sawatzky, C. Brune, J. Müller and M. Burger, Total variation processing of images with poisson statistics, Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns, 5702 (2009), 533-540. doi: 10.1007/978-3-642-03767-2_65.

[48]

F. R. Schmidt and D. Cremers, A closed-form solution for image sequence segmentation with dynamical shape priors, in Pattern Recognition (Proc. DAGM), 2009. doi: 10.1007/978-3-642-03798-6_4.

[49]

D. Strong, J.-F. Aujol and T. Chan, Scale recognition, regularization parameter selection, and Meyers G norm in total variation regularization, SIAM Journal on Multiscale Modeling and Simulation, 5 (2006), 273-303. doi: 10.1137/040621624.

[50]

S. P. Sullivan et al., F. M. Sani, M. L. Johns and L. F. Gladden, Simulation of packed bed reactors using lattice Boltzmann methods, Chemical Engineering Science, 60 (2005), 3405-3418.

[51]

M. F. Tappen, Utilizing variational optimization to learn Markov random fields, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007), 2007. doi: 10.1109/CVPR.2007.383037.

[52]

M. F. Tappen, C. Liu, E. H. Adelson and W. T. Freeman, Learning Gaussian conditional random fields for low-level vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007), 2007. doi: 10.1109/CVPR.2007.382979.

[53]

I. Tosic, I. Jovanovic, P. Frossard, M. Vetterli and N. Duric, Ultrasound tomography with learned dictionaries, IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, Texas, International Conference on Acoustics Speech and Signal Processing ICASSP, 2010. doi: 10.1109/ICASSP.2010.5495211.

[54]

L. Vese, A study in the BV space of a denoising-deblurring variational problem, Appl. Math. Optim., 44 (2001), 131-161. doi: 10.1007/s00245-001-0017-7.

[55]

C. R. Vogel, Computational Methods for Inverse Problems, SIAM, vol. 10, 2002. doi: 10.1137/1.9780898717570.

[56]

C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238, Special Issue on Iterative Methods in Numerical Linear Algebra (Breckenridge, CO, 1994). doi: 10.1137/0917016.

[57]

A. M. Yip and F. Park, Solution Dynamics, Causality, and Critical Behavior of the Regularization Parameter in Total Variation Denoising Problems, CAM reports 03-59, 2003.

show all references

References:
[1]

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229. doi: 10.1088/0266-5611/10/6/003.

[2]

A. Almansa, C. Ballester, V. Caselles and G. Haro, A TV based restoration model with local constraints, J. Sci. Comput., 34 (2008), 209-236. doi: 10.1007/s10915-007-9160-x.

[3]

G. Aubert and J.-F. Aujol, A variational approach to remove multiplicative noise, SIAM Journal on Applied Mathematics, 68 (2008), 925-946. doi: 10.1137/060671814.

[4]

G. Aubert and L. Vese, A variational method in image recovery, SIAM J. Numer. Anal., 34 (1997), 1948-1979. doi: 10.1137/S003614299529230X.

[5]

J.-F. Aujol and G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising, Journal of Mathematical Imaging and Vision, 26 (2006), 217-237. doi: 10.1007/s10851-006-7801-6.

[6]

F. Baus, M. Nikolova and G. Steidl, Smooth objectives composed of asymptotically affine data-fidelity and regularization: Bounds for the minimizers and parameter choice, Journal of Mathematical Imaging and Vision, Published Online (2013).

[7]

M. Bertalmio, V. Caselles, B. Rougé and A. Solé, TV based image restoration with local constraints, Journal of Scientific Computing, 19 (2003), 95-122. doi: 10.1023/A:1025391506181.

[8]

A. Bovik, Handbook of Image and Video Processing, Academic Press, 2000.

[9]

G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems, J. Reine Angew Math., 458 (1995), 1-18. doi: 10.1515/crll.1995.458.1.

[10]

G. Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. TMA, 15 (1990), 679-692. doi: 10.1016/0362-546X(90)90007-4.

[11]

G. Bouchitté and G. Buttazzo, Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. H. Poincaré, 10 (1993), 345-361.

[12]

J. F. Cai, R. H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Problems and Imaging, 2 (2008), 187-204. doi: 10.3934/ipi.2008.2.187.

[13]

E. Casas and L. Fernández, Distributed control of systems governed by a general class of quasilinear elliptic equations, J. Differential Equations, 104 (1993), 20-47. doi: 10.1006/jdeq.1993.1062.

[14]

A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. doi: 10.1023/B:JMIV.0000011321.19549.88.

[15]

A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[16]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An Introduction to Total Variation for Image Analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery (ed. M. Fornasier,), Radon Series on Computational and Applied Mathematics, De Gruyter Verlag, 263-340, 2010. doi: 10.1515/9783110226157.263.

[17]

T. F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837. doi: 10.1137/040604297.

[18]

T. F. Chan and J. J. Shen, Image Processing and Analysis - Variational, PDE, Wavelet, and Stochastic Methods, SIAM, (2005). doi: 10.1137/1.9780898717877.

[19]

G. Dal Maso, An introduction to Gamma-convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[20]

J. C. De los Reyes, Optimal control of a class of variational inequalities of the second kind, SIAM Journal on Control and Optimization, 49 (2011), 1629-1658. doi: 10.1137/090764438.

[21]

J. C. De los Reyes, Optimization of mixed variational inequalities arising in flow of viscoplastic materials, Computational Optimization and Applications, 52 (2012), 757-784. doi: 10.1007/s10589-011-9435-x.

[22]

F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J., 33 (1984), 673-709. doi: 10.1512/iumj.1984.33.33036.

[23]

D. C. Dobson and C. R. Vogel, Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 34 (1997), 1779-1791. doi: 10.1137/S003614299528701X.

[24]

J. Domke, Generic methods for optimization-based modeling, in International Conference on Artificial Intelligence and Statistics, 318-326, 2012.

[25]

J. Domke, Learning graphical model parameters with approximate marginal inference, Published Online, PAMI, (2013). doi: 10.1109/TPAMI.2013.31.

[26]

V. Duval, J.-F. Aujol and Y. Gousseau, The TVL1 model: A geometric point of view, SIAM Journal on Multiscale Modeling and Simulation, 8 (2009), 154-189. doi: 10.1137/090757083.

[27]

M. Fornasier, V. Naumova and S. V. Pereverzyev, Parameter Choice Strategies for Multi-Penalty Regularization, preprint, July 2013. http://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/parameter_choice_strategies.pdf. doi: 10.1088/0266-5611/29/7/075002.

[28]

K. Frick, P. Marnitz and A. Munk, Statistical multiresolution dantzig estimation in imaging: Fundamental concepts and algorithmic framework, Electron. J. Stat., 6 (2012), 231-268. doi: 10.1214/12-EJS671.

[29]

K. Frick, P. Marnitz and A. Munk, Shape constrained regularization by statistical multiresolution for inverse problems, Inverse Problems, 28 (2012), 065006. doi: 10.1088/0266-5611/28/6/065006.

[30]

K. Frick, P. Marnitz and A. Munk, Statistical multiresolution estimation for variational imaging: With an application in poisson-biophotonics, Journal of Mathematical Imaging and Vision, 46 (2013), 370-387. doi: 10.1007/s10851-012-0368-5.

[31]

P. Getreuer, M. Tong and L. A. Vese, A variational model for the restoration of MR images corrupted by blur and Rician noise, in Advances in Visual Computing, Springer Berlin-Heidelberg-Chicago, 686-698, 2012. doi: 10.1007/978-3-642-24028-7_63.

[32]

G. Gilboa, N. Sochen and Y. Y. Zeevi, Texture preserving variational denoising using an adaptive fidelity term, in Proc. VLsM, (Vol. 3), 2003.

[33]

G. Gilboa, N. Sochen and Y. Y. Zeevi, Estimation of optimal PDE-based denoising in the SNR sense, Image Processing, IEEE Transactions on, 15 (2006), 2269-2280. doi: 10.1109/TIP.2006.875248.

[34]

M. Hintermüller, Y. Dong and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, Journal of Mathematical Imaging and Vision, 40 (2011), 82-104. doi: 10.1007/s10851-010-0248-9.

[35]

M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem,, SIAM Journal on Applied Mathematics, 64 (): 1311.  doi: 10.1137/S0036139903422784.

[36]

M. Hintermüller and A. Langer, Subspace Correction Methods for a Class of Non-Smooth and Non-Additive Convex Variational Problems in Image Processing, Accepted by SIAM J. Imaging Sciences, 2013, 34 pp. http://math.uni-graz.at/mobis/publications/SFB-Report-2012-021.pdf.

[37]

M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM Journal on Scientific Computing, 28 (2006), 1-23. doi: 10.1137/040613263.

[38]

J. M. Chung, M. Chung and D. P. O'Leary, Designing optimal spectral filters for inverse problems, SIAM Journal on Scientific Computing, 33 (2011), 3132-3152. doi: 10.1137/100812938.

[39]

T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263. doi: 10.1007/s10851-007-0652-y.

[40]

Risheng Liu, Zhouchen Lin, Wei Zhang and Zhixun Su, Learning PDEs for Image Restoration via Optimal Control, ECCV 2010. doi: 10.1007/978-3-642-15549-9_9.

[41]

K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM Journal on Imaging Sciences, 6 (2013), 938-983. doi: 10.1137/120882706.

[42]

B. Manz et al., L. F. Gladden and P. B. Warren, Flow and dispersion in porous media: Lattice-Boltzmann and NMR studies, AIChE Journal, 45 (1999), 1845-1854.

[43]

M. D. Mantle et al., A. J. Sederman and L. F. Gladden, Single- and two-phase flow in fixed-bed reactors: MRI flow visualisation and lattice-Boltzmann simulations, Chemical Engineering Science, 56 (2001), 523-529.

[44]

V. A. Morozov, Regularization Methods for Ill-posed Problems, CRC Press, Boca Raton, 1993.

[45]

M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 99-120. doi: 10.1023/B:JMIV.0000011920.58935.9c.

[46]

G. Peyré and J. Fadili, Learning analysis sparsity priors, Proc. of Sampta'11, (2011).

[47]

A. Sawatzky, C. Brune, J. Müller and M. Burger, Total variation processing of images with poisson statistics, Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns, 5702 (2009), 533-540. doi: 10.1007/978-3-642-03767-2_65.

[48]

F. R. Schmidt and D. Cremers, A closed-form solution for image sequence segmentation with dynamical shape priors, in Pattern Recognition (Proc. DAGM), 2009. doi: 10.1007/978-3-642-03798-6_4.

[49]

D. Strong, J.-F. Aujol and T. Chan, Scale recognition, regularization parameter selection, and Meyers G norm in total variation regularization, SIAM Journal on Multiscale Modeling and Simulation, 5 (2006), 273-303. doi: 10.1137/040621624.

[50]

S. P. Sullivan et al., F. M. Sani, M. L. Johns and L. F. Gladden, Simulation of packed bed reactors using lattice Boltzmann methods, Chemical Engineering Science, 60 (2005), 3405-3418.

[51]

M. F. Tappen, Utilizing variational optimization to learn Markov random fields, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007), 2007. doi: 10.1109/CVPR.2007.383037.

[52]

M. F. Tappen, C. Liu, E. H. Adelson and W. T. Freeman, Learning Gaussian conditional random fields for low-level vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2007), 2007. doi: 10.1109/CVPR.2007.382979.

[53]

I. Tosic, I. Jovanovic, P. Frossard, M. Vetterli and N. Duric, Ultrasound tomography with learned dictionaries, IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, Texas, International Conference on Acoustics Speech and Signal Processing ICASSP, 2010. doi: 10.1109/ICASSP.2010.5495211.

[54]

L. Vese, A study in the BV space of a denoising-deblurring variational problem, Appl. Math. Optim., 44 (2001), 131-161. doi: 10.1007/s00245-001-0017-7.

[55]

C. R. Vogel, Computational Methods for Inverse Problems, SIAM, vol. 10, 2002. doi: 10.1137/1.9780898717570.

[56]

C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238, Special Issue on Iterative Methods in Numerical Linear Algebra (Breckenridge, CO, 1994). doi: 10.1137/0917016.

[57]

A. M. Yip and F. Park, Solution Dynamics, Causality, and Critical Behavior of the Regularization Parameter in Total Variation Denoising Problems, CAM reports 03-59, 2003.

[1]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[2]

Savin Treanţă. Characterization of efficient solutions for a class of PDE-constrained vector control problems. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 93-106. doi: 10.3934/naco.2019035

[3]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems and Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[4]

René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655

[5]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

[6]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[7]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[8]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[9]

Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055

[10]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[11]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[12]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321

[14]

Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018

[15]

Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, Bingzhe Wei. RWRM: Residual Wasserstein regularization model for image restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1307-1332. doi: 10.3934/ipi.2020069

[16]

Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021

[17]

Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems and Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032

[18]

Xiao Ai, Guoxi Ni, Tieyong Zeng. Nonconvex regularization for blurred images with Cauchy noise. Inverse Problems and Imaging, 2022, 16 (3) : 625-646. doi: 10.3934/ipi.2021065

[19]

Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022004

[20]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems and Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (277)
  • HTML views (0)
  • Cited by (38)

[Back to Top]