February  2013, 7(1): 123-157. doi: 10.3934/ipi.2013.7.123

A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid

1. 

Université de Technologie de Compiègne, Laboratoire de Mathématiques Appliquées, EA 2222, Compiègne, France, France

2. 

Université de Pau et des pays de l'Adour, Laboratoire de Mathématiques Appliquées, UMR CNRS 5142, Pau, France

3. 

Université d'Oran, Département de Mathématiques, BP 1524, El-Menaouer, Oran, Algeria

Received  January 2012 Revised  October 2012 Published  February 2013

The aim of our work is to reconstruct an inclusion $\omega$ immersed in a fluid flowing in a larger bounded domain $\Omega$ via a boundary measurement on $\partial\Omega$. Here the fluid motion is assumed to be governed by the Stokes equations. We study the inverse problem of reconstructing $\omega$ thanks to the tools of shape optimization by minimizing a Kohn-Vogelius type cost functional. We first characterize the gradient of this cost functional in order to make a numerical resolution. Then, in order to study the stability of this problem, we give the expression of the shape Hessian. We show the compactness of the Riesz operator corresponding to this shape Hessian at a critical point which explains why the inverse problem is ill-posed. Therefore we need some regularization methods to solve numerically this problem. We illustrate those general results by some explicit calculus of the shape Hessian in some particular geometries. In particular, we solve explicitly the Stokes equations in a concentric annulus. Finally, we present some numerical simulations using a parametric method.
Citation: Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems and Imaging, 2013, 7 (1) : 123-157. doi: 10.3934/ipi.2013.7.123
References:
[1]

M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow, Appl. Numer. Math., 59 (2009), 1823-1838. doi: 10.1016/j.apnum.2009.01.008.

[2]

L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389-416 (electronic). doi: 10.3934/dcdsb.2007.8.389.

[3]

L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), 1556-1590. doi: 10.1137/070687438.

[4]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.

[5]

C. J. S. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations, J. Inverse Ill-Posed Probl., 15 (2007), 461-481. doi: 10.1515/jiip.2007.026.

[6]

C. Amrouche and V. Girault, Problèmes généralisés de Stokes, Portugal. Math., 49 (1992), 463-503.

[7]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44(119) (1994), 109-140.

[8]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.

[9]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015, 25 pp. doi: 10.1088/0266-5611/26/12/125015.

[10]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case, Appl. Anal., to appear.

[11]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim., 48 (2009/10), 2871-2900. doi: 10.1137/070704332.

[12]

F. Boyer and P. Fabrie, "Éléments d'Analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin) [Mathematics & Applications], 52, Springer-Verlag, Berlin, 2006.

[13]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.

[14]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, Detecting a moving obstacle in an ideal fluid by a boundary measurement, C. R. Math. Acad. Sci. Paris, 346 (2008), 839-844. doi: 10.1016/j.crma.2008.06.007.

[15]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010, 18 pp. doi: 10.1088/0266-5611/26/9/095010.

[16]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95-121.

[17]

M. Engliš and J. Peetre, A Green's function for the annulus, Ann. Mat. Pura Appl. (4), 171 (1996), 313-377. doi: 10.1007/BF01759391.

[18]

K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybernet., 34 (2005), 203-225.

[19]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems," Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.

[20]

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim., 39 (2001), 1756-1778 (electronic). doi: 10.1137/S0363012900369538.

[21]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques & Applications (Berlin) [Mathematics & Applications], 48, Springer, Berlin, 2005.

[22]

D. Martin, "Finite Element Library Mélina," Available from: http://anum-maths.univ-rennes1.fr/melina/.

[23]

V. Maz'ya and T. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions," Monographs and Studies in Mathematics, 23, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[24]

F. Murat and J. Simon, "Sur le Contrôle par un Domaine Géométrique," Rapport du L.A. 189, Université de Paris VI, France, 1976.

[25]

J. Nocedal and S. J. Wright, "Numerical Optimization," Second edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.

[26]

J. R. Shewchuk, "Mesh Generator Triangle," Available from: http://www.cs.cmu.edu/~quake/triangle.html.

[27]

J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1980), 649-687 (1981). doi: 10.1080/01630563.1980.10120631.

[28]

J. Simon, Second variations for domain optimization problems, in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1988), Internat. Ser. Numer. Math., 91, Birkhäuser, Basel, (1989), 361-378.

[29]

J. Simon, Domain variation for drag in Stokes flow, in "Control Theory of Distributed Parameter Systems and Applications" (Shanghai, 1990), Lecture Notes in Control and Inform. Sci., 159, Springer, Berlin, (1991), 28-42. doi: 10.1007/BFb0004434.

[30]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), 1251-1272 (electronic). doi: 10.1137/S0363012997323230.

[31]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

show all references

References:
[1]

M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow, Appl. Numer. Math., 59 (2009), 1823-1838. doi: 10.1016/j.apnum.2009.01.008.

[2]

L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389-416 (electronic). doi: 10.3934/dcdsb.2007.8.389.

[3]

L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), 1556-1590. doi: 10.1137/070687438.

[4]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.

[5]

C. J. S. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations, J. Inverse Ill-Posed Probl., 15 (2007), 461-481. doi: 10.1515/jiip.2007.026.

[6]

C. Amrouche and V. Girault, Problèmes généralisés de Stokes, Portugal. Math., 49 (1992), 463-503.

[7]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44(119) (1994), 109-140.

[8]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.

[9]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015, 25 pp. doi: 10.1088/0266-5611/26/12/125015.

[10]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case, Appl. Anal., to appear.

[11]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim., 48 (2009/10), 2871-2900. doi: 10.1137/070704332.

[12]

F. Boyer and P. Fabrie, "Éléments d'Analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin) [Mathematics & Applications], 52, Springer-Verlag, Berlin, 2006.

[13]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.

[14]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, Detecting a moving obstacle in an ideal fluid by a boundary measurement, C. R. Math. Acad. Sci. Paris, 346 (2008), 839-844. doi: 10.1016/j.crma.2008.06.007.

[15]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010, 18 pp. doi: 10.1088/0266-5611/26/9/095010.

[16]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95-121.

[17]

M. Engliš and J. Peetre, A Green's function for the annulus, Ann. Mat. Pura Appl. (4), 171 (1996), 313-377. doi: 10.1007/BF01759391.

[18]

K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybernet., 34 (2005), 203-225.

[19]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems," Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.

[20]

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim., 39 (2001), 1756-1778 (electronic). doi: 10.1137/S0363012900369538.

[21]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques & Applications (Berlin) [Mathematics & Applications], 48, Springer, Berlin, 2005.

[22]

D. Martin, "Finite Element Library Mélina," Available from: http://anum-maths.univ-rennes1.fr/melina/.

[23]

V. Maz'ya and T. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions," Monographs and Studies in Mathematics, 23, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[24]

F. Murat and J. Simon, "Sur le Contrôle par un Domaine Géométrique," Rapport du L.A. 189, Université de Paris VI, France, 1976.

[25]

J. Nocedal and S. J. Wright, "Numerical Optimization," Second edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.

[26]

J. R. Shewchuk, "Mesh Generator Triangle," Available from: http://www.cs.cmu.edu/~quake/triangle.html.

[27]

J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1980), 649-687 (1981). doi: 10.1080/01630563.1980.10120631.

[28]

J. Simon, Second variations for domain optimization problems, in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1988), Internat. Ser. Numer. Math., 91, Birkhäuser, Basel, (1989), 361-378.

[29]

J. Simon, Domain variation for drag in Stokes flow, in "Control Theory of Distributed Parameter Systems and Applications" (Shanghai, 1990), Lecture Notes in Control and Inform. Sci., 159, Springer, Berlin, (1991), 28-42. doi: 10.1007/BFb0004434.

[30]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), 1251-1272 (electronic). doi: 10.1137/S0363012997323230.

[31]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

[1]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006

[2]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[3]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[4]

John Sebastian Simon, Hirofumi Notsu. A shape optimization problem constrained with the Stokes equations to address maximization of vortices. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022003

[5]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[6]

Masataka Shibata. Asymptotic shape of a solution for the Plasma problem in higher dimensional spaces. Communications on Pure and Applied Analysis, 2003, 2 (2) : 259-275. doi: 10.3934/cpaa.2003.2.259

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks and Heterogeneous Media, 2021, 16 (1) : 1-29. doi: 10.3934/nhm.2020031

[8]

Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems and Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003

[9]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control and Related Fields, 2021, 11 (3) : 653-679. doi: 10.3934/mcrf.2021017

[10]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[11]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[12]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems and Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[13]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control and Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[14]

Pierre-Étienne Druet. Some mathematical problems related to the second order optimal shape of a crystallisation interface. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2443-2463. doi: 10.3934/dcds.2015.35.2443

[15]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[16]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[17]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[18]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[19]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[20]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (209)
  • HTML views (0)
  • Cited by (16)

[Back to Top]