Advanced Search
Article Contents
Article Contents

Multi-wave imaging in attenuating media

Abstract Related Papers Cited by
  • We consider a mathematical model of thermoacoustic tomography and other multi-wave imaging techniques with variable sound speed and attenuation. We find that a Neumann series reconstruction algorithm, previously studied under the assumption of zero attenuation, still converges if attenuation is sufficiently small. With complete boundary data, we show the inverse problem has a unique solution, and modified time reversal provides a stable reconstruction. We also consider partial boundary data, and in this case study those singularities that can be stably recovered.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 35A27, 92C55.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Ammari, E. Bretin, J. Garnier and A. Wahab, Time reversal in attenuating acoustic media, Contemp. Math., 548 (2011), 151-163.doi: 10.1090/conm/548/10841.


    G. Bal, K. Ren, G. Uhlmann and T. Zhou, Quantitative thermo-acoustics and related problems, Inverse Problems, 27 (2011), 055007.doi: 10.1088/0266-5611/27/5/055007.


    P. Burgholzer, F. Camacho-Gonzales, D. Sponseiler, G. Mayer and G. Hendorfer, Information changes and time reversal for diffusion-related periodic fields, Proc. SPIE, 7177 (2009), 717723.doi: 10.1117/12.809074.


    B. T. Cox, J. G. Laufer and P. C. Beard, The challenges for photoacoustic imaging, Proc. SPIE, 7177 (2009), 717713.doi: 10.1117/12.806788.


    X. L. Deán-Ben, D. Razansky and V. Ntziachristos, The effects of attenuation in optoacoustic signals, Phys. Med. Biol., 56 (2011), 6129-6148.


    D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240.doi: 10.1137/S0036141002417814.


    Y. Hristova, Time reversal in thermoacoustic tomography - an error estimate, Inverse Problems, 25 (2009), 055008.doi: 10.1088/0266-5611/25/5/055008.


    Y. Hristova, P. Kuchment and L. Nyugen, On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems, 24 (2008), 055006.doi: 10.1088/0266-5611/24/5/055006.


    X. Jin, C. Li and L. Wang, Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography, Med. Phys., 35 (2008), 3205-3214.doi: 10.1118/1.2938731.


    K. Kalimeris and O. ScherzerPhotoacoustic imaging in attenuating acoustic media based on strongly causal models, Math. Meth. Appl. Sci., to appear. doi: 10.1002/mma.2756.


    R. Kowar, Integral equation models for thermoacoustic imaging of acoustic dissipative tissue, Inverse Problems, 26 (2010), 095005.doi: 10.1088/0266-5611/26/9/095005.


    R. Kowar, O. Scherzer and X. Bonnefond, Causality analysis of frequency-dependent wave attenuation, Math. Meth. in Appl. Sci., 34 (2011), 108-124.doi: 10.1002/mma.1344.


    P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, Euro. J. Appl. Math., 19 (2008), 191-224.doi: 10.1017/S0956792508007353.


    I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.


    D. Modgil, M. Anastasio and P. J. La Rivière, Photoacoustic image reconstruction in an attenuating medium using singular value decomposition, Proc. SPIE, 7177 (2009), 71771B.


    S. K. Patch and M. Haltmeier, Thermoacoustic tomography - ultrasound attenuation effects, IEEE Nucl. Sci. Symp. Conf. Rec., 4 (2006), 2604-2606.


    J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An effecient Neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imaging Sciences, 4 (2011), 850-883.doi: 10.1137/100817280.


    M. Reed and B. Simon, Methods of Modern Mathematical Physics, volume 2, Academic Press, 1975.


    P. J. La Rivière, J. Zhang and M. Anastasio, Image reconstruction in optoacoustic tomography for dispersive acoustic media, Optics Letters, 31 (2006), 781-783.


    H. Roitner and P. Burgholzer, Effecient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging, Inverse Problems, 27 (2011), 015003.doi: 10.1088/0266-5611/27/1/015003.


    P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011.doi: 10.1088/0266-5611/25/7/075011.


    D. Tataru, Unqiue continuation for operators with partially analytic coefficients, J. Math. Pures Appl., 78 (1999), 505-521.doi: 10.1016/S0021-7824(99)00016-1.


    M. Taylor, Pseudodifferential Operators, Princeton University Press, 1981.


    J. Tittlefitz, Thermoacoustic tomography in elastic media, Inverse Problems, 28 (2012), 055004.doi: 10.1088/0266-5611/28/5/055004.


    B. Treeby, E. Zhang and B. T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal, Inverse Problems, 26 (2010), 115003.doi: 10.1088/0266-5611/26/11/115003.

  • 加载中

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint